题目内容
方程x2-4x=3的根是 .
考点:解一元二次方程-配方法
专题:
分析:在左右两边同时加上一次项系数-4的一半的平方.
解答:解:方程两边同时加上一次项系数一半的平方,得到x2-4x+4=3+4
配方,得
(x-2)2=7.
开方,得
x-2=±
,
解得,x1=2+
,x2=2-
.
故答案是:x1=2+
,x2=2-
.
配方,得
(x-2)2=7.
开方,得
x-2=±
| 7 |
解得,x1=2+
| 7 |
| 7 |
故答案是:x1=2+
| 7 |
| 7 |
点评:本题考查了解一元二次方程--配方法.用配方法解一元二次方程的步骤:
(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.
(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.
(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.
(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.
练习册系列答案
相关题目
一艘轮船以16海里∕小时的速度从港口A出发向东北方向航行,另一轮船12海里∕小时从港口A出发向东南方向航行,离开港口3小时后,则两船相距( )
| A、36海里 | B、48海里 |
| C、60海里 | D、84海里 |