题目内容
已知:cos(α﹣15°)=,则α= .
如图,在平面直角坐标系中直线y=x﹣2与y轴相交于点A,与反比例函数在第一象限内的图象相交于点B(m,2).
(1)求反比例函数的关系式;
(2)将直线y=x﹣2向上平移后与反比例函数图象在第一象限内交于点C,且△ABC的面积为18,求平移后的直线的函数关系式.
三角形两边长分别为3和6,第三边是方程x2﹣13x+36=0的根,则三角形的周长为 .
二次函数 y=ax2+bx+c(a≠0)的图象经过点A(4,0),B(2,8),且以x=1为对称轴.
(1)求此函数的解析式,并作出它的示意图;
(2)当0<x<4时,写出y的取值范围;
(3)结合图象直接写出不等式ax2+bx+c>0(a≠0)的解集.
计算:cos30°﹣sin60°+2sin45°×tan45°.
张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,同时与他邻近的一棵树的影长为6米,则这棵树的高为( )
A.3.2米 B.4.8米 C.5.2米 D.5.6米
综合与探究:
如图,抛物线y=x2﹣x﹣4与x轴交与A,B两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.
(1)求点A,B,C的坐标.
(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N.试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.
(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
考点:二次函数综合题.
2015中国沿海湿地国际公路自行车赛东台站,东台站的比赛赛道,经过国家体育总局、江苏省专家组的多次勘查和反复论证,确定总长为135000米,这个数据用科学记数法表示为 米.
考点:科学记数法—表示较大的数.
计算:(2m+n﹣p)(2m﹣n+p)