题目内容

如图,在平行四边形ABCD中,E为BC边上一点,且BE:EC=3:5,AE交BD于点F,则
BF+EF
FD+AF
=
 
考点:相似三角形的判定与性质,平行四边形的性质
专题:
分析:由四边形ABCD是平行四边形,可得AD∥BC,AD=BC,继而可判定△BEF∽△DAF,根据相似三角形的对应边成比例,即可得BF:DF=BE:AD,再根据比例式的合比性质即可求出
BF+EF
FD+AF
的值.
解答:解:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴△BEF∽△DAF,
∵BE:EC=3:5,
∴BE:AD=BF:DF=EF:AF=3:5,
BF+EF
FD+AF
=
3+3
5+5
=
6
10
=
3
5

故答案为:
3
5
点评:此题考查了比例式的基本性质以及相似三角形的判定与性质与平行四边形的性质.此题比较简单,解题的关键是根据题意判定△BEF∽△DAF,再利用相似三角形的对应边成比例定理求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网