题目内容

3.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交线段BC,AC于点D,E,过点D作DF⊥AC,垂足为F,线段FD,AB的延长线相交于点G.
(1)求证:DF是⊙O的切线;
(2)若CF=1,DF=$\sqrt{3}$,求图中阴影部分的面积.

分析 (1)连接AD、OD,由AB为直径可得出点D为BC的中点,由此得出OD为△BAC的中位线,再根据中位线的性质即可得出OD⊥DF,从而证出DF是⊙O的切线;
(2)CF=1,DF=$\sqrt{3}$,通过解直角三角形得出CD=2、∠C=60°,从而得出△ABC为等边三角形,再利用分割图形求面积法即可得出阴影部分的面积.

解答 (1)证明:连接AD、OD,如图所示.
∵AB为直径,
∴∠ADB=90°,
∴AD⊥BC,
∵AC=AB,
∴点D为线段BC的中点.
∵点O为AB的中点,
∴OD为△BAC的中位线,
∴OD∥AC,
∵DF⊥AC,
∴OD⊥DF,
∴DF是⊙O的切线.
(2)解:在Rt△CFD中,CF=1,DF=$\sqrt{3}$,
∴tan∠C=$\frac{DF}{CF}$=$\sqrt{3}$,CD=2,
∴∠C=60°,
∵AC=AB,
∴△ABC为等边三角形,
∴AB=4.
∵OD∥AC,
∴∠DOG=∠BAC=60°,
∴DG=OD•tan∠DOG=2$\sqrt{3}$,
∴S阴影=S△ODG-S扇形OBD=$\frac{1}{2}$DG•OD-$\frac{60}{360}$πOB2=2$\sqrt{3}$-$\frac{2}{3}$π.

点评 本题考查了等腰三角形的性质、切线的判定、扇形面积的计算以及三角形面积的计算,解题的关键是:(1)证出OD⊥DF;(2)利用分割图形求面积法求出阴影部分的面积.本题属于中档题,难度不大,解决该题型题目时,利用分割图形求面积法求面积是解题的难点,在日常练习中应加强训练.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网