题目内容
如图,△ABC中,D、E两点分别在AC、BC上,则AB=AC,CD=DE.若∠A=40°,∠ABD:∠DBC=3:4,则∠BDE=( )
![]()
A.25° B.30° C.35° D.40°
B
【解析】
根据已知及等腰三角形的性质可求得两底角的度数,再根据∠ABD:∠DBC=3:4,列方程求解即可求出∠BDE的度数.
【解析】
∵AB=AC,CD=DE
∴∠C=∠DEC=∠ABC
∴AB∥DE
∵∠A=40°
∴∠C=∠DEC=∠ABC=
=70°
∵∠ABD:∠DBC=3:4
∴设∠ABD为3x,∠DBC为4x
∴3x+4x=70°
∴x=10°
∵AB∥DE
∴∠BDE=∠ABD=30°
故选B.
练习册系列答案
相关题目