题目内容
下列说法中,正确的是( )
A. 棱柱的侧面可以是三角形 B. 由六个大小一样的正方形所组成的图形是正方体的展开图
C. 正方体的各条棱都相等 D. 棱柱的各条棱都相等
已知二次函数的图象与轴交于A、B两点(A在B的左侧),与轴交于点C,顶点为D.
(1)求点A、B的坐标,并在下面直角坐标系中画出该二次函数的大致图象;
(2)设一次函数的图象经过B、D两点,请直接写出满足的的取值范围.
如图,在菱形ABCD中,对角线AC与BD相交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为( )
A. 75° B. 65° C. 55° D. 50°
若一个棱柱有十个顶点,且所有侧棱长的和为,则每条侧棱长为________;
如图是由一些相同的小正方体搭成的几何体从三个方向看到的图形,则搭成这个几何体的小正方体的个数是( )
A. B. C. D.
如图,D是线段AB的中点,C是线段AB的垂直平分线上的一点,DE⊥AC于点E,DF⊥BC于点F.
(1)求证:DE=DF;
(2)当CD与AB满足怎样的数量关系时,四边形CEDF为正方形?请说明理由.
将正方形纸片ABCD按如图所示对折,使边AD与BC重合,折痕为EF,连接AE,将AE折叠到AB上,折痕为AH,则的值是______.
如图,抛物线与直线交于A、B两点.点A的横坐标为-3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB于D.
(1)求抛物线的解析式;
(2)当m为何值时,;
(3)是否存在点P,使△PAD是直角三角形,若存在,求出点P的坐标;若不存在,说明理由.
点A(3,n)关于原点对称的点的坐标为(-3,2),那么n=___________