题目内容
16.(1)两条对角线的长度;
(2)菱形的面积.
分析 (1)首先证明△ABC是等边三角形,解直角三角形OAB即可解决问题;
(2)菱形的面积等于对角线乘积的一半;
解答 解:(1)菱形ABCD的周长为32cm,
∴菱形的边长为32÷4=8cm
∵∠ABC:∠BAD=1:2,∠ABC+∠BAD=180°(菱形的邻角互补),
∴∠ABC=60°,∠BCD=120°,
∴△ABC是等边三角形,
∴AC=AB=8cm,
∵菱形ABCD对角线AC、BD相交于点O,
∴AO=CO,BO=DO且AC⊥BD,
∴BO=4$\sqrt{3}$cm,
∴BD=8$\sqrt{3}$cm;
(2)菱形的面积=$\frac{1}{2}$AC•BD=$\frac{1}{2}$×8×8$\sqrt{3}$=32$\sqrt{3}$(cm2).
点评 本题考查菱形的性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是证明△ABC是等边三角形,属于中考常考题型.
练习册系列答案
相关题目
11.下列图形中,既是轴对称图形,又是中心对称图形的是( )
| A. | B. | C. | D. |
8.
如图,在△ABC中,BD⊥AC于点D,点E为AB的中点,AD=6,DE=5,则线段BD的长为( )
| A. | 5 | B. | 6 | C. | 8 | D. | 10 |