题目内容

如图所示,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,DE⊥AC于点E,若DE=1,∠A=30°,则△ABC的面积为________.


分析:由于在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,可以得到CD=AD=BD=AB,又DE⊥AC,∠A=30°,DE=1,由此可以依次求出AD,AB,BC,AC,最后根据三角形的面积公式即可求出△ABC的面积.
解答:∵在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,
∴CD=AD=BD=AB
∵DE⊥AC,∠A=30°,DE=1
∴AD=2
∴AB=4
∴BC=2
∴AC=2
∴△ABC的面积为2
故填空答案:2
点评:此题考查了直角三角形的性质:
(1)直角三角形斜边上的中线等于斜边的一半;
(2)直角三角形中,30°角所对的直角边是斜边的一半.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网