题目内容
(10分)如图,在矩形ABCD中,点E在AD上,EC平分∠BED.
![]()
(1)△BEC是否为等腰三角形?为什么?
(2)若AB=1,∠ABE=45°,求BC的长.
(1)是,理由见试题解析;(2)
.
【解析】
试题分析:(1)求出∠DEC=∠ECB=∠BEC,推出BE=BC即可;
(2)求出AE=AB=1,根据勾股定理求出BE即可.
试题解析:(1)△BEC是等腰三角形,理由是:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEC=∠BCE,∵EC平分∠DEB,∴∠DEC=∠BEC,∴∠BEC=∠ECB,∴BE=BC,即△BEC是等腰三角形;
(2)∵四边形ABCD是矩形,∴∠A=90°,∵∠ABE=45°,∴∠ABE=AEB=45°,∴AB=AE=1,由勾股定理得:BE=
=
,即BC=BE=
.
考点:1.矩形的性质;2.等腰三角形的判定.
练习册系列答案
相关题目
某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入。下表是某周的生产情况(超产记为正、减产记为负):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增减产值 | +5 | -2 | -4 | +13 | -10 | +16 | -9 |
(1)根据记录的数据可知该厂星期五生产自行车_____________辆;
(2)根据记录的数据可知该厂本周实际生产自行车_____________辆;
(3)该厂实行每日计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少元?