题目内容

11.如图,△ABC中,D为BC边上一点,AD的垂直平分线交AD于E,交BC的延长线于点F,且∠CAF=∠B,说明:AD平分∠BAC.

分析 由EF是AD的垂直平分线,可得AF=DF,然后由等边对等角,可证得∠EAF=∠EDF,然后利用三角形外角的性质与∠FAC=∠B,可证得AD平分∠BAC.

解答 证明:∵EF是AD的垂直平分线,
∵AF=DF,
∴∠EAF=∠EDF,
∵∠EAF=∠FAC+∠CAD,∠EDF=∠BAD+∠B,
又∵∠FAC=∠B,
∴∠BAD=∠CAD,
即AD平分∠BAC.

点评 此题主要考查了线段垂直平分线的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网