题目内容

7.如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA方向运动,连接PD,以PD为边,在PD右侧按如图方式作等边△DPF,当点P从点E运动到点A时,点F运动的路径长是(  )
A.8B.10C.D.

分析 连结DE,作FH⊥BC于H,如图,根据等边三角形的性质得∠B=60°,过D点作DE′⊥AB,则BE′=$\frac{1}{2}$BD=2,则点E′与点E重合,所以∠BDE=30°,DE=$\sqrt{3}$BE=2$\sqrt{3}$,接着证明△DPE≌△FDH得到FH=DE=2$\sqrt{3}$,于是可判断点F运动的路径为一条线段,此线段到BC的距离为2$\sqrt{3}$,当点P在E点时,作等边三角形DEF1,则DF1⊥BC,当点P在A点时,作等边三角形DAF2,作F2Q⊥BC于Q,则△DF2Q≌△ADE,所以DQ=AE=8,所以F1F2=DQ=8,于是得到当点P从点E运动到点A时,点F运动的路径长为8.

解答 解:连结DE,作FH⊥BC于H,如图,
∵△ABC为等边三角形,
∴∠B=60°,
过D点作DE′⊥AB,则BE′=$\frac{1}{2}$BD=2,
∴点E′与点E重合,
∴∠BDE=30°,DE=$\sqrt{3}$BE=2$\sqrt{3}$,
∵△DPF为等边三角形,
∴∠PDF=60°,DP=DF,
∴∠EDP+∠HDF=90°
∵∠HDF+∠DFH=90°,
∴∠EDP=∠DFH,
在△DPE和△FDH中,
$\left\{\begin{array}{l}{∠PED=∠DHF}\\{∠EDP=∠DFH}\\{DP=FD}\end{array}\right.$,
∴△DPE≌△FDH,
∴FH=DE=2$\sqrt{3}$,
∴点P从点E运动到点A时,点F运动的路径为一条线段,此线段到BC的距离为2$\sqrt{3}$,
当点P在E点时,作等边三角形DEF1,∠BDF1=30°+60°=90°,则DF1⊥BC,
当点P在A点时,作等边三角形DAF2,作F2Q⊥BC于Q,则△DF2Q≌△ADE,所以DQ=AE=10-2=8,
∴F1F2=DQ=8,
∴当点P从点E运动到点A时,点F运动的路径长为8.
故选:A

点评 本题考查了轨迹:点运动的路径叫点运动的轨迹,利用代数或几何方法确定点运动的规律.也考查了等边三角形的性质和三角形全等的判定与性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网