题目内容

18.如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1,△ABC与△AB1C1公共部分的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2;…,以此类推,则Sn=$\frac{\sqrt{3}}{2}$($\frac{3}{4}$)n.(用含n的式子表示)

分析 由AB1为边长为2的等边三角形ABC的高,利用三线合一得到B1为BC的中点,求出BB1的长,利用勾股定理求出AB1的长,进而求出S1,同理求出S2,依此类推,得到Sn

解答 解:∵等边三角形ABC的边长为2,AB1⊥BC,
∴BB1=1,AB=2,
根据勾股定理得:AB1=$\sqrt{3}$,
∴S1=$\frac{1}{2}$×$\frac{\sqrt{3}}{4}$×($\sqrt{3}$)2=$\frac{\sqrt{3}}{2}$($\frac{3}{4}$)1
∵等边三角形AB1C1的边长为$\sqrt{3}$,AB2⊥B1C1
∴B1B2=$\frac{\sqrt{3}}{2}$,AB1=$\sqrt{3}$,
根据勾股定理得:AB2=$\frac{3}{2}$,
∴S2=$\frac{1}{2}$×$\frac{\sqrt{3}}{4}$×($\frac{3}{2}$)2=$\frac{\sqrt{3}}{2}$($\frac{3}{4}$)2
依此类推,Sn=$\frac{\sqrt{3}}{2}$($\frac{3}{4}$)n
故答案为:$\frac{\sqrt{3}}{2}$($\frac{3}{4}$)n

点评 此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网