题目内容
若m为正实数,且m-| 1 |
| m |
| 1 |
| m2 |
分析:由m-
=3,得m2-3m-1=0,即(m-
)2=
,因为m为正实数,可得出m的值,代入m2-
,解答出即可;
| 1 |
| m |
| 3 |
| 2 |
| 13 |
| 4 |
| 1 |
| m2 |
解答:解:法一:由m-
=3得,
得m2-3m-1=0,即(m-
)2=
,
∴m1=
,m2=
,
因为m为正实数,∴m=
,
∴m2-
=(m-
)(m+
)
=3×(
+
),
=3×
,
=3
;
法二:由m-
=3平方得:m2+
-2=9,
m2+
+2=13,即(m+
)2=13,又m为正实数,
∴m+
=
,
则m2-
=(m+
)(m-
)=3
.
故答案为3
.
| 1 |
| m |
得m2-3m-1=0,即(m-
| 3 |
| 2 |
| 13 |
| 4 |
∴m1=
3+
| ||
| 2 |
3-
| ||
| 2 |
因为m为正实数,∴m=
3+
| ||
| 2 |
∴m2-
| 1 |
| m2 |
| 1 |
| m |
| 1 |
| m |
=3×(
3+
| ||
| 2 |
| 1 | ||||
|
=3×
(3+
| ||
2(3+
|
=3
| 13 |
法二:由m-
| 1 |
| m |
| 1 |
| m2 |
m2+
| 1 |
| m2 |
| 1 |
| m |
∴m+
| 1 |
| m |
| 13 |
则m2-
| 1 |
| m2 |
| 1 |
| m |
| 1 |
| m |
| 13 |
故答案为3
| 13 |
点评:本题考查了完全平方公式、平方差公式,求出m的值代入前,一定要把代数式分解完全,可简化计算步骤.
练习册系列答案
相关题目