题目内容
【题目】问题探究
(
)如图①,已知正方形
的边长为
,点
和
分别是边
、
上两点,且
.连接
和
,交于点
.猜想
与
的位置关系,并证明你的结论.
(
)如图②,已知正方形
的边长为
,点
和
分别从点
、
同时出发,以相同的速度沿
、
方向向终点
和
运动,连接
和
,交于点
,求
周长的最大值.
问题解决
(
)如图③,
为边长为
的菱形
的对角线,
.点
和
分别从点
、
同时出发;以相同的速度沿
、
向终点
和
运动,连接
和
,交于点
,求
周长的最大值.
![]()
![]()
![]()
【答案】(
)
(
)
(
)![]()
【解析】试题分析:(1)结论:AM⊥BN.只要证明△ABM≌△BCN即可解决问题;
(2)如图②中,以AB为斜边向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP.首先证明PA+PB=2EF,求出EF的最大值即可解决问题;
(3)如图③中,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB.首先证明PA+PB=PK,求出PK的最大值即可解决问题;
试题解析:解:(1)结论:AM⊥BN.理由如下:
如图①中,∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°,∵BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∵∠CBN+∠ABN=90°,∴∠ABN+∠BAM=90°,∴∠APB=90°,∴AM⊥BN.
![]()
(2)如图②中,以AB为斜边向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP.
![]()
∵∠EFP=∠FPG=∠G=90°,∴四边形EFPG是矩形,∴∠FEG=∠AEB=90°,∴∠AEF=∠BEG,∵EA=EB,∠EFA=∠G=90°,∴△AEF≌△BEG,∴EF=EG,AF=BG,∴四边形EFPG是正方形,∴PA+PB=PF+AF+PG﹣BG=2PF=2EF,∵EF≤AE,∴EF的最大值=AE=
,∴△APB周长的最大值=
.
(3)如图③中,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB.
![]()
∵AB=BC,∠ABM=∠BCN,BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∴∠APN=∠BAM+∠ABP=∠CBN+∠ABN=60°,∴∠APB=120°,∵∠AKB=60°,∴∠AKB+∠APB=180°,∴A、K、B、P四点共圆,∴∠BPH=∠KAB=60°,∵PH=PB,∴△PBH是等边三角形,∴∠KBA=∠HBP,BH=BP,∴∠KBH=∠ABP,∵BK=BA,∴△KBH≌△ABP,∴HK=AP,∴PA+PB=KH+PH=PK,∴PK的值最大时,△APB的周长最大,∴当PK是△ABK外接圆的直径时,PK的值最大,最大值为4,∴△PAB的周长最大值=
.