题目内容
下列运算正确的是( )
A. ﹣a•a3=a3 B. ﹣(a2)2=a4 C. x﹣x= D. (﹣2)(+2)=﹣1
如图,在平行四边形ABCD中,AD>AB.
(1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法);
(2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接EF.求证:四边形ABFE为菱形.
若,其中、为两个连续的整数,则的值为( ).
A. B. C. 6 D.
如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE与△ABC的面积之比为______.
现代互联网技术的广泛应用,促进快递行业高速发展,据调查,我市某家快递公司,今年3月份与5月份完成投递的快递总件数分别为6.3万件和8万件.设快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是( )
A. 6.3(1+2x)=8 B. 6.3(1+x)=8
C. 6.3(1+x)2=8 D. 6.3+6.3(1+x)+6.3(1+x)2=8
已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.
(1)求证:△ABD≌△CAE;
(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.
【答案】(1)证明详见解析;(2)AB∥DE,AB=DE,理由详见解析.
【解析】试题分析:(1)运用AAS证明△ABD≌△CAE;
(2)易证四边形ADCE是矩形,所以AC=DE=AB,也可证四边形ABDE是平行四边形得到AB=DE.
试题解析:证明:(1)∵AB=AC,
∴∠B=∠ACD,
∵AE∥BC,
∴∠EAC=∠ACD,
∴∠B=∠EAC,
∵AD是BC边上的中线,
∴AD⊥BC,
∵CE⊥AE,
∴∠ADC=∠CEA=90°
在△ABD和△CAE中
∴△ABD≌△CAE(AAS);
(2)AB∥DE,AB=DE,理由如下:
如图所示,
∵AD⊥BC,AE∥BC,
∴AD⊥AE,
又∵CE⊥AE,
∴四边形ADCE是矩形,
∴AC=DE,
∵AB=AC,
∴AB=DE,
∴四边形ABDE是平行四边形,
∴AB∥DE,AB=DE.
考点:全等三角形的判定与性质;等腰三角形的性质;平行四边形的判定与性质.
【题型】解答题【结束】21
已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂直为D,若OB=2OA=3OD=6.
(1)求一次函数与反比例函数的解析式;
(2)求两函数图象的另一个交点坐标;
(3)直接写出不等式;kx+b≤的解集.
函数中自变量的取值范围是_______.
【答案】x<1
【解析】试题解析:
由题意得,1-x>0,
解得x<1.
【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
【题型】填空题【结束】14
如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=__.
如图,在矩形ABCD中,AB=2,BC=4,⊙D的半径为1.现将一个直角三角板的直角顶点与矩形的对称中心O重合,绕着O点转动三角板,使它的一条直角边与⊙D切于点H,此时两直角边与AD交于E,F两点,则tan∠EFO的值为_____.
已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是( )
A. (3,3) B. (3,-3) C. (6,-6) D. (3,3)或(6,-6)