题目内容

(2012•孝感)已知关于x的一元二次方程x2+(m+3)x+m+1=0.
(1)求证:无论m取何值,原方程总有两个不相等的实数根:
(2)若x1,x2是原方程的两根,且|x1-x2|=2
2
,求m的值,并求出此时方程的两根.
分析:(1)根据关于x的一元二次方程x2+(m+3)x+m+1=0的根的判别式△=b2-4ac的符号来判定该方程的根的情况;
(2)根据根与系数的关系求得x1+x2=-(m+3),x1•x2=m+1;然后由已知条件“|x1-x2|=2
2
”可以求得(x1-x22=(x1+x22-4x1x2=8,从而列出关于m的方程,通过解该方程即可求得m的值;最后将m值代入原方程并解方程.
解答:(1)证明:∵△=(m+3)2-4(m+1)…1分
=(m+1)2+4…3分
∵无论m取何值,(m+1)2+4恒大于0
∴原方程总有两个不相等的实数根…4分

(2)∵x1,x2是原方程的两根
∴x1+x2=-(m+3),x1•x2=m+1…5分
∵|x1-x2|=2
2
∴(x1-x22=(2
2
2
∴(x1+x22-4x1x2=8…7分
∴[-(m+3)]2-4(m+1)=8∴m2+2m-3=0…9分
   解得:m1=-3,m2=1…10分
   当m=-3时,原方程化为:x2-2=0
             解得:x1=
2
,x2=-
2
…11分
   当m=1时,原方程化为:x2+4x+2=0
             解得:x1=-2+
2
,x2=-2-
2
…12分
点评:本题考查了根与系数的关系、根的判别式.一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网