题目内容
如图所示,在一块长为米,宽为米的矩形草地上,在中间要设计-横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?
在直角坐标系平面内,抛物线y=3x2+2x在对称轴的左侧部分是_____的(填“上升”或“下降”)
阅读材料:
学习了无理数后,小航用这样的方法估算的近似值:
由于,不妨设(),
所以,可得.
由可知,所以,
解得 , 则 .
依照小航的方法解决下列问题:
(1)估算的值.
(2)已知非负整数、、,若,且,则 .(用含、的代数式表示)
定义运算,若,,则下列等式中不正确的是
A. B.
C. D.
若在实数范围内有意义,则x不能取的值是
A. 2 B. 3 C. 4 D. 5
从、、、、这个数中任取一个数,作为关于的一元二次方程的值,则所得的方程中有两个相等的实数根的概率是________.
如图,在平面直角坐标系中,直线l1:y=﹣x与反比例函数y=的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2:
(1)求反比例函数的表达式;
(2)将直线l1:y=﹣x向上平移后的直线l2与反比例函数y=在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.
如图,矩形OABC的顶点B(7,6),顶点A、C在坐标轴上,矩形内部一点D在双曲线y=上,DE⊥AB于点E,DF⊥BC于点F,若四边形DEBF为正方形,则点D的坐标是( )
A. (2,6) B. (3,4) C. (4,3) D. (6,2)
如图,若抛物线y=ax2+bx+c上的P(4,0),Q两点关于它的对称轴x=1对称,则关于x的一元二次方程ax2+bx+c=0的解是___________.