题目内容

古希腊著名的毕达哥拉斯派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和,下列等式中,符合这一规律的是(  )
A、36=15+21
B、49=18+31
C、25=9+16
D、13=3+10
考点:规律型:数字的变化类,规律型:图形的变化类
专题:
分析:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为
1
2
n(n+1)和
1
2
(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.
解答:解:根据规律:正方形数可以用代数式表示为:(n+1)2
两个三角形数分别表示为
1
2
n(n+1)和
1
2
(n+1)(n+2),
只有A、36=15+21符合.
故选:A.
点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律,解决问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网