题目内容

14.已知A(3,2)是平面直角坐标中的一点,点B是x轴负半轴上一动点,联结AB,并以AB为边在x轴上方作矩形ABCD,且满足BC:AB=1:2,设点C的横坐标是a,如果用含a的代数式表示D点的坐标,那么D点的坐标是(2,$\frac{6-a}{2}$).

分析 如图,过C作CH⊥x轴于H,过A作AF⊥x轴于F,AG⊥y轴于G,过D作DE⊥AG于E,于是得到∠CHB=∠AFO=∠AED=90°,根据余角的性质得到∠DAE=∠FAB,推出△BCH∽△ABF,根据相似三角形的性质得到$\frac{BH}{AF}=\frac{CH}{BF}=\frac{BC}{AB}$,求得BH=$\frac{1}{2}$AF=1,CH=$\frac{1}{2}$BF=$\frac{-a+2}{2}$,通过△BCH≌△ADE,得到AE=BH=1,DE=CH=$\frac{-a+2}{2}$,求得EG=3-1=2,于是得到结论.

解答 解:如图,过C作CH⊥x轴于H,过A作AF⊥x轴于F,AG⊥y轴于G,过D作DE⊥AG于E,
∴∠CHB=∠AFO=∠AED=90°,
∴∠GAF=90°,∴∠DAE=∠FAB,
∵四边形ABCD是矩形,
∴∠ABC=90°,
∴∠BCH=∠ABF,
∴△BCH∽△ABF,
∴$\frac{BH}{AF}=\frac{CH}{BF}=\frac{BC}{AB}$,
∵A(3,2),
∴AF=2,AG=3,
∵点C的横坐标是a,
∴OH=-a,
∵BC:AB=1:2,
∴BH=$\frac{1}{2}$AF=1,CH=$\frac{1}{2}$BF=$\frac{-a+2}{2}$,
∵△BCH∽△ABF,
∴∠HBC=∠DAE,
在△BCH与△ADE中,$\left\{\begin{array}{l}{∠BHC=∠DEA}\\{∠CBH=∠DAE}\\{BC=AD}\end{array}\right.$,
∴△BCH≌△ADE,
∴AE=BH=1,DE=CH=$\frac{-a+2}{2}$,
∴EG=3-1=2,
∴D(2,$\frac{6-a}{2}$).
故答案为:(2,$\frac{6-a}{2}$).

点评 本题考查了相似三角形的判定和性质,坐标与图形的性质,全等三角形的判定和性质,矩形的性质,正确的画出图形是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网