题目内容


已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2,其中正确结论的个数是(  )

A.0       B.1       C.2       D.3


D【考点】二次函数图象与系数的关系.

【分析】根据抛物线与x轴的交点个数对①进行判断;由抛物线开口方向得a<0,由抛物线的对称轴在y轴的右侧得b>0,由抛物线与y轴的交点在x轴上方得c>0,则可对②进行判断;由ax2+bx+c﹣m=0没有实数根得到抛物线y=ax2+bx+c与直线y=m没有公共点,加上二次函数的最大值为2,则m>2,于是可对③进行判断.

【解答】解:∵抛物线与x轴有2个交点,

∴b2﹣4ac>0,所以①正确;

∵抛物线开口向下,

∴a<0,

∵抛物线的对称轴在y轴的右侧,

∴b>0,

∵抛物线与y轴的交点在x轴上方,

∴c>0,

∴abc<0,所以②正确;

∵ax2+bx+c﹣m=0没有实数根,

即抛物线y=ax2+bx+c与直线y=m没有公共点,

∵二次函数的最大值为2,

∴m>2,所以③正确.

故选D.

 


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网