题目内容

如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为( )

A.50° B.51° C.51.5° D.52.5°

D

【解析】

试题分析:根据等腰三角形的性质推出∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,根据三角形的外角性质求出∠B=25°,由三角形的内角和定理求出∠BDE,根据平角的定义即可求出选项.

【解析】
∵AC=CD=BD=BE,∠A=50°,

∴∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,

∵∠B+∠DCB=∠CDA=50°,

∴∠B=25°,

∵∠B+∠EDB+∠DEB=180°,

∴∠BDE=∠BED=(180°﹣25°)=77.5°,

∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°,

故选D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网