题目内容

18、如图2,将矩形纸片ABCD(图1)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E(如图2);(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F(如图3);(3)将纸片收展平,那么∠AEF的度数为
67.5°

分析:根据翻折前后角度不发生变化,第一次折叠求出∠EAD的度数,再利用第2次翻折,得出∠AFE=∠EFA′以及度数,从而求出∠AEF的度数.
解答:解:根据题意:以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E,
∴∠EAD=45°,
∵过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F,
∴∠EA′F=∠FAE=45°,
∴∠AFE=∠EFA′=(180°-45°)÷2=67.5°,
∴∠AEF=∠FEA′=180°-67.5°-45°=67.5°.
故答案为:67.5°.
点评:此题主要考查了翻折变换,利用翻折变换前后角不发生大小变化是解决问题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网