题目内容
【题目】自主学习,请阅读下列解题过程.
解一元二次不等式:x2﹣5x>0.
解:设x2﹣5x=0,解得:x1=0,x2=5,则抛物线y=x2﹣5x与x轴的交点坐标为(0,0)和(5,0).画出二次函数y=x2﹣5x的大致图象(如图所示),由图象可知:当x<0,或x>5时函数图象位于x轴上方,此时y>0,即x2﹣5x>0,所以,一元二次不等式x2﹣5x>0的解集为:x<0,或x>5.
通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:
(1)上述解题过程中,渗透了下列数学思想中的 和 .(只填序号)
①转化思想 ②分类讨论思想 ③数形结合思想
(2)一元二次不等式x2﹣5x<0的解集为 .
(3)用类似的方法解一元二次不等式:x2﹣2x﹣3>0.
![]()
【答案】(1)①,③(2)0<x<5(3)x<﹣1,或x>3.
【解析】试题分析:(1)解题过程中,渗透了转化思想和数形结合思想;
(2)观察图象即可写出一元二次不等式:x2﹣5x<0的解集;
(3)先设函数解析式,根据a的值确定抛物线的开口向上,再找出抛物线与x轴相交的两点,就可以画出抛物线,根据y>0确定一元二次不等式x2﹣2x﹣3>0的解集.
试题解析:解:(1)上述解题过程中,渗透了下列数学思想中的①和③;
故答案为:①,③;
(2)由图象可知:当0<x<5时函数图象位于x轴下方,此时y<0,即x2﹣5x<0,∴一元二次不等式x2﹣5x<0的解集为:0<x<5。故答案为:0<x<5.
(3)设x2﹣2x﹣3=0,解得:x1=3,x2=﹣1,∴抛物线y=x2﹣2x﹣3与x轴的交点坐标为(3,0)和(﹣1,0).
画出二次函数y=x2﹣2x﹣3的大致图象(如图所示)。
由图象可知:当x<﹣1或x>3时函数图象位于x轴上方,此时y>0,即x2﹣2x﹣3>0,∴一元二次不等式x2﹣2x﹣3>0的解集为:x<﹣1或x>3.