题目内容
【题目】如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的-元二次方程-x2+mx-t=0 (t为实数)在l<x<3的范围内有解,则t的取值范围是( )
![]()
A.-5<t≤4 B.3<t≤4 C.-5<t<3 D.t>-5
【答案】B
【解析】
先利用抛物线的对称轴方程求出m得到抛物线解析式为y=-x2+4x,配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=-x2+4x与直线y=t在1<x<3的范围内有公共点可确定t的范围.
∵ 抛物线y=-x2+mx的对称轴为直线x=2,
∴
,
解之:m=4,
∴y=-x2+4x,
当x=2时,y=-4+8=4,
∴顶点坐标为(2,4),
∵ 关于x的-元二次方程-x2+mx-t=0 (t为实数)在l<x<3的范围内有解,
当x=1时,y=-1+4=3,
当x=2时,y=-4+8=4,
∴ 3<t≤4,
故选:B
练习册系列答案
相关题目