题目内容
如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2= °.
在下列方程中,一元二次方程是( )
A.x2﹣2xy+y2=0 B.x(x+3)=x2﹣1 C.x2﹣2x=3 D.x+=0
如图所示,圆锥形漏斗的侧面积为60π,它的底面半径OB=6cm,则这个圆锥形漏斗的高OC是 cm.
(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD•BC=AP•BP.
(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.
(3)应用:请利用(1)(2)获得的经验解决问题:
如图3,在△ABD中,AB=12,AD=BD=10.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切,求t的值.
先化简,再求值:,其中x是不等式组的整数解.
已知y是x的反比例函数,当x>0时,y随x的增大而减小.请写出一个满足以上条件的函数表达式 .
若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是( )
A. B. C. D.
已知x、y满足方程组,则y﹣x的值是 .
如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上的一点,且AC平分∠PAE,过C作CD⊥PA于点D.
(1)求证:CD为⊙O的切线.
(2)若DC+DA=6,AE=26,求AB的长.