题目内容

九(三)班在“2012年新春联欢会”中,开设了一个摸奖游戏,规则如下:有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌.若正面是笑脸的就获奖,正面是哭脸的不获奖.
(1)若你有一次翻牌机会,从中随机翻开一张纸牌,获奖的概率是
 

(2)在某个游戏环节中,甲、乙两同学恰好同时都有一次翻牌的机会.这时甲同学要求先翻牌,认为这样获奖的可能大,你认为先、后翻牌获奖的可能性一样吗?请你用列表法或树状图利用所学知识加以说明.
考点:列表法与树状图法,概率公式
专题:
分析:(1)根据正面有2张笑脸、2张哭脸,而翻一次牌正面是笑脸的就获奖,直接的出获胜概率.
(2)运用图表列举出所有可能即可得出分别获胜的概率.
解答:解:(1)∵有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸,翻一次牌正面是笑脸的就获奖,正面是哭脸的不获奖,
∴获奖的概率是
1
2
(或填0.5).
故答案为:
1
2
(或填0.5).

(2)他们获奖机会不相等,理由如下:
甲:

第一张

二张
笑1笑2哭1哭2
笑1笑1,笑1笑2,笑1哭1,笑1哭2,笑1
笑2笑1,笑2笑2,笑2哭1,笑2哭2,笑2
哭1笑1,哭1笑2,哭1哭1,哭1哭2,哭1
哭2笑1,哭2笑2,哭2哭1,哭2哭2,哭2
∴P(甲获奖)=
1
4

乙:

第一张

二张
笑1笑2哭1哭2
笑1笑2,笑1哭1,笑1哭2,笑1
笑2笑1,笑2哭1,笑2哭2,笑2
哭1笑1,哭1
笑2,哭1
哭2,哭1
哭2笑1,哭2笑2,哭2
哭1,哭2
P(乙获奖)=
1
6

因为
1
4
1
6
,所以他们获奖的机会不相等.
点评:此题主要考查了列举法求概率,列举出事件中所有的结果是解决问题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网