题目内容
【题目】从宁海县到某市,可乘坐普通列车或高铁,已知高铁的行驶路程与普通列车的行驶路程之和是920千米,而普通列车的行驶路程是高铁的行驶路程的1.3倍.
(1)求普通列车的行驶路程;
(2)若高铁的平均速度(千米/时)是普通列车的平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.
【答案】(1)普通列车的行驶路程是520千米;(2)高铁的平均速度是300千米/时
【解析】
(1)设高铁的行驶路程为x千米,则普通列车的行驶路程为1.3x千米,根据“普通列车的行驶路程+高铁的行驶路程=920千米”列出方程并解答.
(2)设普通列车平均速度是a千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短3小时,列出分式方程,然后求解即可.
解:(1)设高铁的行驶路程为x千米,则普通列车的行驶路程为1.3x千米,
依题意得:x+1.3x=920
解得x=400.
所以1.3x=520(千米)
答:普通列车的行驶路程是520千米;
(2)设普通列车平均速度是a千米/时,则高铁平均速度是2.5a千米/时,根据题意得:
解得:a=120,
经检验a=120是原方程的解,
则高铁的平均速度是120×2.5=300(千米/时),
答:高铁的平均速度是300千米/时
【题目】某公司为一种新型电子产品在该城市的特约经销商,已知每件产品的进价为40元,该公司每年销售这种产品的其他开支(不含进货价)总计100万元,在销售过程中得知,年销售量y(万件)与销售单价x(元)之间存在如表所示的函数关系,并且发现y是x的一次函数.
销售单价x(元) | 50 | 60 | 70 | 80 |
销售数量y(万件) | 5.5 | 5 | 4.5 | 4 |
(1)求y与x的函数关系式;
(2)问:当销售单价x为何值时,该公司年利润最大?并求出这个最大值;
【备注:年利润=年销售额﹣总进货价﹣其他开支】
(3)若公司希望年利润不低于60万元,请你帮助该公司确定销售单价的范围.