题目内容
如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是( )
![]()
A. x>﹣2 B. x>0 C. x>1 D. x<1
C 【解析】试题分析:当x>1时,x+b>kx+4, 即不等式x+b>kx+4的解集为x>1. 故选:C. 考点:一次函数与一元一次不等式.在元旦联欢晚会上,有A、B、C三名同学站在一个三角形的三个顶点上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为游戏公平,则凳子应放的最适当的位置是△ABC的( )
A. 三边中线的交点 B. 三条角平分线的交点
C. 三边上高的交点 D. 三边垂直平分线的交点
查看答案下列各组数不能作为直角三角形边长的是( )
A. 3,4,5 B. 8,15,17 C. 7,9,11 D. 9,12,15
查看答案如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为( )
![]()
A. 0.5km B. 0.6km C. 0.9km D. 1.2km
查看答案如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是( )
![]()
A. BC=EC,∠B=∠E B. BC=EC,AC=DC C. BC=DC,∠A=∠D D. ∠B=∠E,∠A=∠D
查看答案下列各数中,3.141 59,
,0.131 131 113…,-π,
,
,无理数的个数有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案 试题属性- 题型:单选题
- 难度:中等
一元二次方程x(x-3)=4的解是( )
A. 1 B. 4 C. -1或4 D. 1或-4
C 【解析】试题解析:∵x(x-3)=4, ∴x2-3x-4=0, ∴(x-4)(x+1)=0, ∴x-4=0或x+1=0, ∴x1=4,x2=-1. 故选C.已知:点P是∠MAN的角平分线上一点,PB⊥AM于B,PC⊥AN于C.
(1)如图1,点D、E分别在线段AB、AC上,且∠DPE=
∠BPC,求证:DE=BD+CE;
![]()
(2)如图2,若D在AB的延长线上,E在直线AC上,则DE、BD、CE三者的数量关系变化吗?若变化,请直接写出结论即可。
![]()
阅读下列材料:
(1)解方程: ![]()
【解析】
方程化为:
.
即化为:(2x-3)(x-1)=0,
∴ 2x-3=0或x-1=0,
解得:x=
或x=1.
∴方程的根为:
,
.
(2)求解分式方程的过程是:将分式方程化为整式方程,然后求解整式方程,然后将整工方程的根代入验根,舍去增根,得到的根就是原方程的根.
参考上述材料,解决下列问题:
(1)解方程:
;
(2)若方程
的一个解是x=1,则方程的其他解是__________.
已知:如图,Rt△ABC中,∠BAC=90°.
(1)按要求作图:(保留作图痕迹)
![]()
①延长BC到点D,使CD=BC;
②延长CA到点E,使AE=2CA;
③连接AD,BE并猜想线段AD与BE的大小关系;
(2)证明(1)中你对线段AD与BE大小关系的猜想.
【解析】
(1)AD与BE的大小关系是________________.
(2)证明:
查看答案已知:如图,AB=AC,AD=AE,∠BAC=∠DAE=α,BE与AC、CD分别相交于点N、M.
(1)求证:BE=CD;
(2)求∠BMC的大小.(用α表示)
![]()
2017年9月17日,金秋的北京,我校初二全体同学到距学校30千米的房山农业职业学院,参加为期一周的学农劳动。同学们乘坐大巴车前往,李老师因学校有事晚出发了5分钟,开私家车前往,结果和同学们同时到达了农职院。已知李老师开的私家车的速度是大巴车速度的1.2倍,求大巴车和李老师开的私家车的速度分别是多少?
查看答案 试题属性- 题型:单选题
- 难度:简单
如图,把弯曲的河道改直,能够缩短航程,这样做根据的道理是_____.
![]()
如图所示,边长为a的正方形中阴影部分的面积为( )
![]()
A. a2﹣π(
)2 B. a2﹣πa2 C. a2﹣πa D. a 2﹣2πa
下列各组整式中不是同类项的是( )
A. 3a2b与﹣2ba2 B. 2xy与
yx C. 16与﹣
D. ﹣2xy2与3yx2
单项式
的系数与次数分别是( )
A.
和3 B. ﹣5和3 C.
和2 D. ﹣5和2
对于圆的周长公式C=2πR,下列说法错误的是( )
A. π是变量 B. R、C是变量 C. R是自变量 D. C是因变量
查看答案下列式子中,符合代数式的书写格式的是( )
A.(a﹣b)×7 B.3a÷5b C.
ab D.![]()
- 题型:填空题
- 难度:简单
如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.
![]()
求下列各式中的x.
(1)4x2 =81;
(2)(x+1)3-27=0.
(3)计算
+(3-π)0-2-1+![]()
如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为 .
![]()
将一次函数y=-x+3的图像沿y轴向下平移2个单位长度,所得图像对应的函数表达式为__________.
查看答案如图,已知函数y=x-2和y=-2x+1的图象交于点P,根据图象可得方程组
的解是 .
![]()
已知a、b、c是△ABC的三边长,且满足关系式
+|a﹣b|=0,则△ABC的形状为_____.
- 题型:解答题
- 难度:中等
如图,在正方形ODBC中,若OC=1,OA=OB,则数轴上点A表示的数是__________.
![]()
某人一天饮水1890mL,用四舍五入法对1890mL精确到1000mL表示为____mL.
查看答案在平面直角坐标系中,点(2,-3)在第____象限.
查看答案
的平方根为_____.
关于直线l:y=kx+k(k≠0),下列说法不正确的是( )
A. 点(0,k)在l上
B. l经过定点(-1,0)
C. 当k>0时,y随x的增大而增大
D. l经过第一、二、三象限
查看答案如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是( )
![]()
A. x>﹣2 B. x>0 C. x>1 D. x<1
查看答案 试题属性- 题型:填空题
- 难度:中等
下列各数中,3.141 59,
,0.131 131 113…,-π,
,
,无理数的个数有( )
A. 1个 B. 2个 C. 3个 D. 4个
B 【解析】无限不循环小数为无理数,由此可得出无理数的个数. 【解析】 由定义可知无理数有:0.131131113…,?π,共两个. 故选:B.在下列“禁毒”“和平”“志愿者”“节水”这四个标志中,属于轴对称图形的是( )
A.
B.
C.
D. ![]()
从2012年4月1日起厦门市实行新的自来水收费阶梯水价,收费标准如下表所示:
月用水量 | 不超过15吨的部分 | 超过15吨不超过25吨的部分 | 超过25吨的部分 |
收费标准 (元/吨) | 2.2 | 3.3 | 4.4 |
备注:①.每月居民用水缴费包括实际用水的水费和污水处理费两部分.
②.以上表中的价格均不包括1元/吨的污水处理费
(1)某用户12月份用水量为20吨,则该用户12月份应缴水费是多少?
(2)若某用户的月用水量为m吨,请用含m的式子表示该用户月所缴水费.
查看答案小明乘公共汽车到东方明珠玩,小明上车时,发现车上已有(6a﹣2b)人,车到中途时,有一半人下车,但又上来若干人,这时公共汽车上共有(10a﹣6b)人,则中途上车多少人?当a=5,b=3时,中途上车的人数.
查看答案定义:若a+b=2,则称a与b是关于1的平衡数.
(1)3与 是关于1的平衡数,5﹣x与 是关于1的平衡数.(用含x的代数式表示)
(2)若a=2x2﹣3(x2+x)+4,b=2x﹣[3x﹣(4x+x2)﹣2],判断a与b是否是关于1 的平衡数,并说明理由.
查看答案某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):
![]()
(1)生产量最多的一天比生产量最少的一天多生产多少辆?
(2)本周总的生产量是多少辆?
查看答案 试题属性- 题型:单选题
- 难度:中等
在数轴上表示下列各数,并用“<”连接起来.
﹣4,﹣|﹣2.5|,﹣(﹣2),0,﹣12.
﹣4<﹣|﹣2.5|<﹣12<0<﹣(﹣2) 【解析】试题分析:首先在数轴上确定表示各数的点的位置,然后再根据在数轴上表示的有理数,右边的数总比左边的数大用“<“号排列即可. 试题解析:如图: , ﹣4<﹣|﹣2.5|<﹣12<0<﹣(﹣2). 【点睛】本题考查了在数轴上表示数,利用数轴比较有理数的大小,正确描点,熟练掌握数轴上的数右边的总比左边的大是解题的关键. ...先化简,再求值:x2﹣3(2x2﹣4y)+2(x2﹣y)其中x=﹣2,y=
.
化简:
(1)﹣3xy﹣2y2+5xy﹣4y2
(2)2(5a2﹣2a)﹣4(﹣3a+2a2)
查看答案计算:
(1)3+(﹣11)﹣(﹣9)
(2)(﹣7)×5﹣(﹣36)÷4
(3)(1﹣
+
)×(﹣24)
(4)﹣14+
×[2×(﹣6)﹣(﹣4)2].
让我们轻松一下,做一个数字游戏:
第一步:取一个自然数n1=5,计算n12+1得a1;
第二步:算出a1的各位数字之和得n2,计算n22+1得a2;
第三步:算出a2的各位数字之和得n3,再计算n32+1得a3;
…
依此类推,则a2013=_____.
查看答案如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是___________.
![]()
- 题型:解答题
- 难度:中等
一个多项式加上多项式2x﹣1后得3x﹣2,则这个多项式为( )
A. x﹣1 B. x+1 C. x﹣3 D. x+3
A 【解析】根据题意得:(3x﹣2)﹣(2x﹣1)=3x﹣2﹣2x+1=x﹣1, 故选A. 【点睛】本题考查了整式的加减,去括号的法则,合并同类项的运用,在去括号时注意符号的变化.下列式子中,不能成立的是( )
A. ﹣(﹣2)=2 B. ﹣|﹣2|=﹣2 C. 23=6 D. (﹣2)2=4
查看答案若有理数a的值在﹣1与0之间,则a的值可以是( )
A. ﹣2 B. 1 C.
D. ![]()
下列运算正确的是( )
A. 3a+2b=5ab B. 3a2b﹣3ba2=0 C. 3x2+2x3=5x5 D. 5y2﹣4y2=1
查看答案下列各组是同类项的是( )
A. a3与a2 B.
与2a2 C. 2xy与2y D. 3与a
﹣3的相反数是( )
A. 3 B. ﹣3 C. -
D. ![]()
- 题型:单选题
- 难度:中等
某商家预测一种衬衫能畅销市场,就用12000元购进了一批这种衬衫,上市后果然供不应求,商家又用了26400元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但每件进价贵了10元.
(1)该商家购进的第一批衬衫是多少件?
(2)若两批衬衫都按每件150元的价格销售,则两批衬衫全部售完后的利润是多少元?
(1) 该商家购进的第一批衬衫是120件.(2) 两批衬衫全部售完后的利润是15600元. 【解析】试题分析:(1)设第一批衬衫x件,则第二批衬衫为2x件,接下来依据第二批衬衫每件进价贵了10元列方程求解即可; (2)先求得每一批衬衫的数量和进价,然后再求得两批衬衫的每一件衬衫的利润,最后根据利润=每件的利润×件数求解即可. 试题解析:(1)设第一批衬衫x件,则第二批衬衫为2x件.根...若x=2m+1,y=3+4m.
(1)请用含x的代数式表示y;
(2)如果x=4,求此时y的值.
查看答案解答一个问题后,将结论作为条件之一,提出与原问题有关的新问题,我们把它称为原问题的一个“逆向”问题.例如,原问题是“若矩形的两边长分别为3和4,求矩形的周长”,求出周长等于14后,它的一个“逆向”问题可以是“若矩形的周长为14,且一边长为3,求另一边的长”;也可以是“若矩形的周长为14,求矩形面积的最大值”,等等.
(1)设A=
,B=
,求A与B的积;
(2)提出(1)的一个“逆向”问题,并解答这个问题.
查看答案按要求完成下列各题:
(1)已知实数a、b满足(a+b)2=1,(a﹣b)2=9,求a2+b2﹣ab的值;
(2)已知(2015﹣a)(2016﹣a)=2047,试求(a﹣2015)2+(2016﹣a)2的值.
查看答案请先将下式化简,再选择一个适当的数代入求值.(1﹣
)﹣
÷
.
解方程
(1)
(2)![]()
- 题型:解答题
- 难度:中等