题目内容
求代数式的最小值
解:∵=∵∴∴当有最小值
解析
先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式的最小值.解:的最小值是.(1)求代数式的最小值;(2)求代数式的最大值;(3)某居民小区要在一块一边靠墙(墙长m)的空地上建一个长方形花园,花园一边靠墙,另三边用总长为m的栅栏围成. 如图,设(m),请问:当取何值时,花园的面积最大?最大面积是多少?
例:说明代数式的几何意义,并求它的最小值.
解:,如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则可以看成点P与点A(0,1)的距离,可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.
设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,
只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,
所以PA′+PB的最小值为线段A′B的长度.为此,构造直角
三角形A′CB,因为A′C=3,CB=3,所以A′B=,
即原式的最小值为。
根据以上阅读材料,解答下列问题:
(1)代数式的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B 的距离之和.(填写点B的坐标)
(2)求代数式的最小值
甲、乙两位同学对问题“求代数式的最小值”提出各自的想法.甲说:“可以利用已经学过的完全平方公式,把它配方成,所以代数式的最小值为-2”.乙说:“我也用配方法,但我配成,最小值为2”.你认为( )
A.甲对 B.乙对 C.甲、乙都对 D.甲乙都不对
先阅读理解下面的例题,再按要求解答下列问题:
例题 :求代数式的最小值.
解:
的最小值是.
(1)求代数式的最小值;
(2)求代数式的最大值;
(3)某居民小区要在一块一边靠墙(墙长m)的空地上建一个长方形花园,花园一边靠墙,另三边用总长为m的栅栏围成. 如图,设(m),请问:当取何值时,花园的面积最大?最大面积是多少?