题目内容

【题目】将在同一平面内如图放置的两块三角板绕公共顶点A旋转,连接BCDE.探究SABCSADC的比是否为定值.

1)两块三角板是完全相同的等腰直角三角板时,SABCSADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图①)

2)一块是等腰直角三角板,另一块是含有30°角的直角三角板时,SABCSADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图②)

3)两块三角板中,∠BAE+CAD180°ABaAEbACmADnabmn为常数),SABCSADE是否为定值?如果是,用含abmn的式子表示此定值(直接写出结论,不写推理过程),如果不是,说明理由.(图③)

【答案】1)结论:SABCSADE1,为定值.理由见解析;(2SABCSADE,为定值,理由见解析;(3SABCSADE,为定值.理由见解析.

【解析】

(1)结论:S△ABC:S△ADE=定值.如图1中,作DH⊥AE于H,CG⊥BA交BA的延长线于G.首先证明∠DAE=∠CAG,利用三角形的面积公式计算即可.
(2)结论:S△ABC:S△ADE=定值.如图1中,作DH⊥AE于H,CG⊥BA交BA的延长线于G.首先证明∠DAE=∠CAG,利用三角形的面积公式计算即可.
(3)结论:S△ABC:S△ADE=定值.如图1中,作DH⊥AE于H,CG⊥BA交BA的延长线于G.首先证明∠DAE=∠CAG,利用三角形的面积公式计算即可.

(1)结论:S△ABC:S△ADE=定值.

理由:如图1中,作DH⊥AE于H,CG⊥BA交BA的延长线于G.

∵∠BAE=∠CAD=90°,

∴∠BAC+∠EAD=180°,∠BAC+∠CAG=180°,

∴∠DAE=∠CAG,

∵AB=AE=AD=AC,

1.

(2)如图2中,S△ABC:S△ADE=定值.

理由:如图1中,作DH⊥AE于H,CG⊥BA交BA的延长线于G.

不妨设∠ADC=30°,则ADAC,AE=AB,

∵∠BAE=∠CAD=90°,

∴∠BAC+∠EAD=180°,∠BAC+∠CAG=180°,

∴∠DAE=∠CAG,

(3)如图3中,如图2中,S△ABC:S△ADE=定值.

理由:如图1中,作DH⊥AE于H,CG⊥BA交BA的延长线于G.

∵∠BAE=∠CAD=90°,

∴∠BAC+∠EAD=180°,∠BAC+∠CAG=180°,

∴∠DAE=∠CAG,

∵AB=a,AE=b,AC=m,AD=n

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网