题目内容
(2014•凤冈县二模)如图,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧AD上任意一点,若AC=5,则四边形ACBP周长的最大值是( )
![]()
A.15 B.15+5
C.20 D.15+5![]()
B
【解析】
试题分析:连结ADBP,PA,由于弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,可得到△ABD为等腰直角三角形,则AD=
BD,由于△ABC为等边三角形,所以AC=BC=AB=5,BD=BP=5,当点P与点D重合时,AP最大,四边形ACBP周长的最大值,最大值为AC+BC+BD+AD=15+5
.
【解析】
连结AD,BP,PA,
∵弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,
∴∠ABD=90°,
∴AD=
AB,
∵△ABC为等边三角形,
∴AC=BC=AB=5,
∴BD=BP=5,
当点P与点D重合时,四边形ACBP周长的最大值,最大值为AC+BC+BD+AD=5+5+5+5
=15+5
.
故选B.
![]()
练习册系列答案
相关题目