题目内容
如图,已知AB是⊙O的直径,∠AOE=60°,点C是AB延长线上一点,CE交⊙O于点D,且CD=OB,则∠C等于( )
![]()
A.10° B.15° C.20° D.30°
B
【解析】
试题分析:利用半径相等得OE=OD,则根据等腰三角形的性质有∠OED=∠ODE,再根据三角形外角性质可计算出∠ODE=
∠AOE=30°,接着利用CD=OB,而OB=OD,则DO=DC,所以∠DOC=∠C,然后再根据三角形外角性质可计算出∠C.
【解析】
连结OD,
∵OE=OD,
∴∠OED=∠ODE,
∵∠AOE=∠OED+∠ODE,
∴∠ODE=
∠AOE=
×60°=30°,
∵CD=OB,
而OB=OD,
∴DO=DC,
∴∠DOC=∠C,
∵∠ODE=∠C+∠DOC,
∴∠C=
∠ODE=15°.
故选B.
![]()
练习册系列答案
相关题目