题目内容

将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2=
 
度.
考点:三角形内角和定理,多边形内角与外角
专题:几何图形问题
分析:分别根据正三角形、正四边形、正五边形各内角的度数及平角的定义进行解答即可.
解答:解:∵∠3=32°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°,
∴∠4=180°-60°-32°=88°,
∴∠5+∠6=180°-88°=92°,
∴∠5=180°-∠2-108°       ①,
∠6=180°-90°-∠1=90°-∠1 ②,
∴①+②得,180°-∠2-108°+90°-∠1=92°,
即∠1+∠2=70°.
故答案为:70°.
点评:本题考查的是三角形内角和定理,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网