题目内容
一元二次方程-x-2=0的根的情况是( )
A.有两个不相等的实数根
B.有两个相等的实数根
C.无实数根
D.不能确定
AB是⊙O的直径,AD与⊙O相交,点C是⊙O上一点,经过点C的直线交AD于点E.
(1)如图1 ,若AC平分∠BAD,CE⊥AD于点E,求证:CE是⊙O的切线;
(2)如图2,若CE是⊙O的切线,CE⊥AD于点E,AC是∠BAD的平分线吗?说明理由;
(3)如图3,若CE是⊙O的切线,AC平分∠BAD,AB=8,AC=6,求AE的长度.
由四舍五入法得到的近似数,下列说法中正确的是
A.精确到十分位,有2个有效数字
B.精确到个位,有2个有效数字
C.精确到百位,有2个有效数字
D.精确到千位,有4个有效数字
如图,PA,PB是⊙O的切线,点A、B为切点,AC是⊙O的直径,∠ACB=75°,∠P的度数= .
若2+x-4=0,则4+2x-3的值是( )
A.4 B.5 C.6 D.8
先化简,再求值:,其中.
化简()- () 的结果是 .
某商场将每件进价为160元的某种商品原来按每件200元出售,一天可售出100件,后来经过市场调查,发现这种商品单价每降低2元,其销量可增加10件.
(1)求商场经营该商品原来一天可获利润多少元?
(2)设后来该商品每件降价x元,商场一天可获利润y元.
①若商场经营该商品一天要获利润4320元,则每件商品应降价多少元?
②求出y与x之间的函数关系式,当x取何值时,商场获利润最大?并求最大利润值.
某仓库调拨一批物资,调进物资共用8小时.调进物资4小时后同时开始调出物资(调进与调出物资的速度均保持不变).该仓库库存物资m(吨)与时间t(小时)之间的函数关系如图所示.则这批物资调出的速度(吨/小时)及从开始调进到全部调出所需要的时间(小时)分别是( )
A.10,10 B.25,8.8 C.10,8.8 D.25,9