题目内容

4.如图,⊙O是△ABC的外接圆,P是⊙O外的一点,AM是⊙O的直径,∠PAC=∠ABC
(1)求证:PA是⊙O的切线;
(2)连接PB与AC交于点D,与⊙O交于点E,F为BD上的一点,若M为$\widehat{BC}$的中点,且∠DCF=∠P,求证:$\frac{BD}{PD}$=$\frac{FD}{ED}$=$\frac{CD}{AD}$.

分析 (1)连接CM,根据圆周角定理得出∠PAC=∠ABC,∠M=∠ABC,得出∠PAC=∠M,由∠M+∠MAC=90°,得出∠PAC+∠MAC=90°,即:∠MAP=90°,就可证得结论;
(2)连接AE,根据垂径定理得出AM⊥BC,进而得出AP∥BC,得出△ADP∽△CDB,根据相似三角形的性质得出$\frac{BD}{PD}$=$\frac{CD}{AD}$,然后证得△ADE∽△CDF,得出$\frac{CD}{DA}$=$\frac{FD}{ED}$,从而证得$\frac{BD}{PD}$=$\frac{FD}{ED}$=$\frac{CD}{AD}$.

解答 证明:(1)连接CM,
∵∠PAC=∠ABC,∠M=∠ABC,
∴∠PAC=∠M,
∵AM是直径,
∴∠M+∠MAC=90°,
∴∠PAC+∠MAC=90°,
即:∠MAP=90°,
∴MA⊥AP,
∴MA⊥AP,
∴PA是⊙O的切线;
(2)连接AE,
∵M为$\widehat{BC}$中点,AM为⊙O的直径,
∴AM⊥BC,
∵AM⊥AP,
∴AP∥BC,
∴△ADP∽△CDB,
∴$\frac{BD}{PD}$=$\frac{CD}{AD}$,
∵AP∥BC,
∴∠P=∠CBD,
∵∠CBD=∠CAE,
∴∠P=∠DCF,
∴∠DCF=∠CAE,
∵∠ADE=∠CDF,
∴△ADE∽△CDF,
∴$\frac{CD}{DA}$=$\frac{FD}{ED}$,
∴$\frac{BD}{PD}$=$\frac{FD}{ED}$=$\frac{CD}{AD}$.

点评 本题考查了圆周角定理的应用,切线的判定,垂径定理的应用,三角形相似的判定和性质,解答时正确添加辅助线是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网