搜索
题目内容
如图4,在
中,
,
,
于
.
求证:
.
试题答案
相关练习册答案
证明:在
中,
,
,
∴
, ∵
,
∴
,又
,
∴
.
练习册系列答案
1加1阅读好卷系列答案
专项复习训练系列答案
初中语文教与学阅读系列答案
阅读快车系列答案
完形填空与阅读理解周秘计划系列答案
英语阅读理解150篇系列答案
奔腾英语系列答案
标准阅读系列答案
53English系列答案
考纲强化阅读系列答案
相关题目
①如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD,BD,BC,AC的中点.
(1)求证:四边形EFGH是平行四边形;
(2)当四边形ABCD满足一个什么条件时,四边形EFGH是菱形?并证明你的结论;
②如图,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC中点,CE⊥AD于E,BF∥AC,交CE的延长线与点F.求证:AB垂直平分DF.
15、已知,如图,锐角△ABC中,AD⊥BC于D,H为垂心(三角形三条高线的交点);在AD上有一点P,且∠BPC为直角.
求证:PD
2
=AD•HD
在△ABC中,AB、BC、AC三边的长分别为
5
、
10
、
13
,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.
(1)△ABC的面积为:
3.5
3.5
.
(2)若△DEF三边的长分别为
5
、
8
、
17
,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为
3
3
.
(3)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.
(4)如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13m
2
、25m
2
、36m
2
,则六边形花坛ABCDEF的面积是
110
110
m
2
.
将矩形ABCD纸片沿对角线AC剪开,得△ABC和△A'C'D,如图1所示.将△A'C'D的顶点A'与点A重合,并绕点A按逆时针方向旋转,使点D、A(A')、B在同一条直线上,如图2所示.
(1)观察图可知:与BC相等的线段是
AD(A′D)
AD(A′D)
,∠CAC'=
90°
90°
;
(2)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.求证:EP=FQ.
(3)如图4,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作Rt△ABE和Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.若AB=kAE、AC=kAF,探究EP与FQ之间的数量关系,并说明理由.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案