题目内容
(2012•岳阳)(1)操作发现:如图①,D是等边△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边△DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明你发现的结论.
(2)类比猜想:如图②,当动点D运动至等边△ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?
(3)深入探究:
Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与点B不重合)连接DC,以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?并证明你探究的结论.
Ⅱ.如图④,当动点D在等边△边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.

(2)类比猜想:如图②,当动点D运动至等边△ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?
(3)深入探究:
Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与点B不重合)连接DC,以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?并证明你探究的结论.
Ⅱ.如图④,当动点D在等边△边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.
分析:(1)根据等边三角形的三条边、三个内角都相等的性质,利用全等三角形的判定定理SAS可以证得△BCD≌△ACF;然后由全等三角形的对应边相等知AF=BD;
(2)通过证明△BCD≌△ACF,即可证明AF=BD;
(3)Ⅰ.AF+BF′=AB;利用全等三角形△BCD≌△ACF(SAS)的对应边BD=AF;同理△BCF′≌△ACD(SAS),则BF′=AD,所以AF+BF′=AB;
Ⅱ.Ⅰ中的结论不成立.新的结论是AF=AB+BF′;通过证明△BCF′≌△ACD(SAS),则BF′=AD(全等三角形的对应边相等);再结合(2)中的结论即可证得AF=AB+BF′.
(2)通过证明△BCD≌△ACF,即可证明AF=BD;
(3)Ⅰ.AF+BF′=AB;利用全等三角形△BCD≌△ACF(SAS)的对应边BD=AF;同理△BCF′≌△ACD(SAS),则BF′=AD,所以AF+BF′=AB;
Ⅱ.Ⅰ中的结论不成立.新的结论是AF=AB+BF′;通过证明△BCF′≌△ACD(SAS),则BF′=AD(全等三角形的对应边相等);再结合(2)中的结论即可证得AF=AB+BF′.
解答:
解:(1)AF=BD;
证明如下:∵△ABC是等边三角形(已知),
∴BC=AC,∠BCA=60°(等边三角形的性质);
同理知,DC=CF,∠DCF=60°;
∴∠BCA-∠DCA=∠DCF-∠DCA,即∠BCD=∠ACF;
在△BCD和△ACF中,
,
∴△BCD≌△ACF(SAS),
∴BD=AF(全等三角形的对应边相等);
(2)证明过程同(1),证得△BCD≌△ACF(SAS),则AF=BD(全等三角形的对应边相等),所以,当动点D运动至等边△ABC边BA的延长线上时,其他作法与(1)相同,AF=BD仍然成立;
(3)Ⅰ.AF+BF′=AB;
证明如下:由(1)知,△BCD≌△ACF(SAS),则BD=AF;
同理△BCF′≌△ACD(SAS),则BF′=AD,
∴AF+BF′=BD+AD=AB;
Ⅱ.Ⅰ中的结论不成立.新的结论是AF=AB+BF′;
证明如下:在△BCF′和△ACD中,
,
∴△BCF′≌△ACD(SAS),
∴BF′=AD(全等三角形的对应边相等);
又由(2)知,AF=BD;
∴AF=BD=AB+AD=AB+BF′,即AF=AB+BF′.
证明如下:∵△ABC是等边三角形(已知),
∴BC=AC,∠BCA=60°(等边三角形的性质);
同理知,DC=CF,∠DCF=60°;
∴∠BCA-∠DCA=∠DCF-∠DCA,即∠BCD=∠ACF;
在△BCD和△ACF中,
|
∴△BCD≌△ACF(SAS),
∴BD=AF(全等三角形的对应边相等);
(2)证明过程同(1),证得△BCD≌△ACF(SAS),则AF=BD(全等三角形的对应边相等),所以,当动点D运动至等边△ABC边BA的延长线上时,其他作法与(1)相同,AF=BD仍然成立;
(3)Ⅰ.AF+BF′=AB;
证明如下:由(1)知,△BCD≌△ACF(SAS),则BD=AF;
同理△BCF′≌△ACD(SAS),则BF′=AD,
∴AF+BF′=BD+AD=AB;
Ⅱ.Ⅰ中的结论不成立.新的结论是AF=AB+BF′;
证明如下:在△BCF′和△ACD中,
|
∴△BCF′≌△ACD(SAS),
∴BF′=AD(全等三角形的对应边相等);
又由(2)知,AF=BD;
∴AF=BD=AB+AD=AB+BF′,即AF=AB+BF′.
点评:本题考查了全等三角形的判定与性质、等边三角形的性质.等边三角形的三条边都相等,三个内角都是60°.
练习册系列答案
相关题目