题目内容

已知:如图,点O是∠EPF的平分线的一点,以O为圆心的圆和∠EPF的两边分别交于点A、B和C、D.试探究∠OBA与∠OCD的关系,并说明理由.
考点:垂径定理,全等三角形的判定与性质,角平分线的性质
专题:
分析:过点O分别作OM⊥AB,ON⊥CD,则可知OM=ON,且OB=OC,则可证得△OMB≌△ONC,可得出∠OBA=∠OCD.
解答:解:∠OBA=∠OCD,理由如下:
过点O分别作OM⊥AB,ON⊥CD,垂足分别为M、N
∵∠EPO=∠FPO,
∴OM=ON,
在Rt△OMB和Rt△ONC中,
OM=ON
OB=OC

∴Rt△OMB≌Rt△ONC(HL),
∴∠OBA=∠OCD.
点评:本题主要考查全等三角形的判定和性质,正确掌握三角形全等的判定方法是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网