题目内容
计算
(1)5-6(2a+3)
(2)2a-(5b-a)+b
(3)-3(2x-y)-2(4x+
y)+4
(4)-[2m-3(m-n+1)-2]-1
(5)3(x2-y2)+(y2-z2)-4(z2-y2)
(6)x2-[x2-(x2-1)]-1
(7)-2(2a-3b)+3(2b-3a)
(8)2(x2-xy)-3(-2x2-3xy)].
(1)5-6(2a+3)
(2)2a-(5b-a)+b
(3)-3(2x-y)-2(4x+
| 1 |
| 2 |
(4)-[2m-3(m-n+1)-2]-1
(5)3(x2-y2)+(y2-z2)-4(z2-y2)
(6)x2-[x2-(x2-1)]-1
(7)-2(2a-3b)+3(2b-3a)
(8)2(x2-xy)-3(-2x2-3xy)].
考点:整式的加减
专题:
分析:(1)先去括号,再合并同类项即可;
(2)先去括号,再合并同类项即可;
(3)先去括号,再合并同类项即可;
(4)先去小括号,再去中括号,然后合并同类项即可;
(5)先去括号,再合并同类项即可;
(6)先去小括号,再去中括号,然后合并同类项即可;
(7)先去括号,再合并同类项即可;
(8)先去括号,再合并同类项即可.
(2)先去括号,再合并同类项即可;
(3)先去括号,再合并同类项即可;
(4)先去小括号,再去中括号,然后合并同类项即可;
(5)先去括号,再合并同类项即可;
(6)先去小括号,再去中括号,然后合并同类项即可;
(7)先去括号,再合并同类项即可;
(8)先去括号,再合并同类项即可.
解答:解:(1)5-6(2a+3)=5-12a-18=-12a-13;
(2)2a-(5b-a)+b=2a-5b+a+b=3a-4b;
(3)-3(2x-y)-2(4x+
y)+4
=-6x+3y-8x-y+4
=-14x+2y+4;
(4)-[2m-3(m-n+1)-2]-1
=-[2m-3m+3n-3-2]-1
=-2m+3m-3n+3+2-1
=m-3n+4;
(5)3(x2-y2)+(y2-z2)-4(z2-y2)
=3x2-3y2+y2-z2-4z2+4y2
=3x2+2y2-5z2;
(6)x2-[x2-(x2-1)]-1
=x2-[x2-x2+1]-1
=x2-x2+x2-1-1
=x2-2;
(7)-2(2a-3b)+3(2b-3a)
=-4a+6b+6b-9a
=-13a+12b;
(8)2(x2-xy)-3(-2x2-3xy)
=2x2-2xy+6x2+9xy
=8x2+7xy.
(2)2a-(5b-a)+b=2a-5b+a+b=3a-4b;
(3)-3(2x-y)-2(4x+
| 1 |
| 2 |
=-6x+3y-8x-y+4
=-14x+2y+4;
(4)-[2m-3(m-n+1)-2]-1
=-[2m-3m+3n-3-2]-1
=-2m+3m-3n+3+2-1
=m-3n+4;
(5)3(x2-y2)+(y2-z2)-4(z2-y2)
=3x2-3y2+y2-z2-4z2+4y2
=3x2+2y2-5z2;
(6)x2-[x2-(x2-1)]-1
=x2-[x2-x2+1]-1
=x2-x2+x2-1-1
=x2-2;
(7)-2(2a-3b)+3(2b-3a)
=-4a+6b+6b-9a
=-13a+12b;
(8)2(x2-xy)-3(-2x2-3xy)
=2x2-2xy+6x2+9xy
=8x2+7xy.
点评:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.
练习册系列答案
相关题目
抛物线y=(x+2)2-3的顶点坐标是( )
| A、(2,-3) |
| B、(-2,3) |
| C、(2,3) |
| D、(-2,-3) |
下面计算正确的是( )
| A、-22=4 |
| B、12ab-9ab=3 |
| C、(-2)3=-6 |
| D、4a2b-4a2b=0 |