题目内容
【题目】已知:如图,在平面直角坐标系中,
是直角三角形,
,点
的坐标分别为
,![]()
(1)求过点
的直线的函数表达式
(2)在
轴上找一点
,连接
,使得
与
相似(不包括全等),并求点
的坐标;
(3)在⑵的条件下,如
分别是
和
上的动点,连接
,设
,问是否存在这样的
使得
与
相似,如果存在,请求出
的值;如果不存在,请说明理由.
![]()
【答案】(1) y=
x+
; (2) D(
,0);(3)
【解析】
(1)设过点A(-3,0),B(1,3)的直线的函数表达式为y=kx+b,
由 0=k×(-3)+b ,
3=k+b
解得k=
,b=
,
∴直线AB的函数表达式为y=
x+
.
(2)如图,过点B作BD⊥AB,交x轴于点D,
![]()
在Rt△ABC和Rt△ADB中,
∵∠BAC=∠DAB,
∴Rt△ABC∽Rt△ADB,
∴D点为所求,
又tan∠ADB=tan∠ABC=
,
∴CD=BC÷tan∠ADB=3÷
=
,
∴OD=OC+CD=
,∴D(
,0);
(3)这样的m存在.
在Rt△ABC中,由勾股定理得AB=5,
如图,
![]()
当PQ∥BD时,△APQ∽△ABD,则
,
解得m=
,
如图,
![]()
当PQ⊥AD时,△APQ∽△ADB,
则![]()
解得m=
.
练习册系列答案
相关题目