题目内容
2.解二元一次方程组:(1)$\left\{\begin{array}{l}{x:y=2:3}\\{x-2y=-8}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{3(y+2)=x-1}\\{5y-2(x-1)=8}\end{array}\right.$.
分析 (1)直接利用代入消元法解方程得出答案;
(2)直接利用代入消元法解方程得出答案.
解答 解:(1)$\left\{\begin{array}{l}{x:y=2:3①}\\{x-2y=-8②}\end{array}\right.$,
由①得:x=$\frac{2}{3}$y,
则代入②得:$\frac{2}{3}$y-2y=-8,
解得:y=6,
则x=4,
故方程组的解为:$\left\{\begin{array}{l}{x=4}\\{y=6}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{3(y+2)=x-1①}\\{5y-2(x-1)=8②}\end{array}\right.$,
由①得,x=3y+7③,
代入②得,5y-2(3y+7-1)=8,
解得:y=-20,
把y=-20代入③得,x=-20×3+7=-53,
故原方程组的解为:$\left\{\begin{array}{l}{x=-53}\\{y=-20}\end{array}\right.$.
点评 此题主要考查了二元一次方程组的解法,正确掌握解题方法是解题关键.
练习册系列答案
相关题目