题目内容

3.探究:如图①,在△ABC中,∠ACB=90°,CD⊥AB于点D,若∠B=30°,则∠ACD的度数是30度;
拓展:如图②,∠MCN=90°,射线CP在∠MCN的内部,点A、B分别在CM、CN上,分别过点A、B作AD⊥CP、BE⊥CP,垂足分别为D、E,若∠CBE=70°,求∠CAD的度数;
应用:如图③,点A、B分别在∠MCN的边CM、CN上,射线CP在∠MCN的内部,点D、E在射线CP上,连接AD、BE,若∠ADP=∠BEP=60°,则∠CAD+∠CBE+∠ACB=120度.

分析 (1)利用直角三角形的性质依次求出∠A,∠ACD即可;
(2)利用直角三角形的性质直接计算得出即可;
(3)利用三角形的外角的性质得出结论,直接转化即可得出结论.

解答 解:(1)在△ABC中,∠ACB=90°,∠B=30°,
∴∠A=60°,
∵CD⊥AB,
∴∠ADC=90°,
∴∠ACD=90°-∠A=30°;
故答案为:30,
(2)∵BE⊥CP,
∴∠BEC=90°,
∵∠CBE=70°,
∴∠BCE=90°-∠CBE=20°,
∵∠ACB=90°,
∴∠ACD=90°-∠BCE=70°,
∵AD⊥CP,
∴∠CAD=90°-∠ACD=20°;
(3)∵∠ADP是△ACD的外角,
∴∠ADP=∠ACD+∠CAD=60°,
同理,∠BEP=∠BCE+∠CBE=60°,
∴∠CAD+∠CBE+∠ACB=∠CAD+∠CBE+∠ACD+∠BCE=(∠CAD+∠ACD)+(∠CBE+∠BCE)=120°,
故答案为120.

点评 此题是三角形的综合题,主要考查了直角三角形的性质,三角形的外角的性质,垂直的定义,解本题的关键是充分利用直角三角形的性质:两锐角互余,是一道比较简单的综合题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网