题目内容
用你发现的规律解答下列问题.
=1-
,
=
-
,
=
-
┅┅
(1)计算
+
+
+
+
=
.
(2)探究
+
+
+…+
=
.(用含有n的式子表示)
(3)
+
+
+…+
的值为
,n=
(4)求
+
+
+
+…+
=
.(用含有n的式子表示)
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
┅┅
(1)计算
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 4×5 |
| 1 |
| 5×6 |
| 5 |
| 6 |
| 5 |
| 6 |
(2)探究
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n(n+1) |
| n |
| n+1 |
| n |
| n+1 |
(3)
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| (2n-1)(2n+1) |
| 17 |
| 35 |
17
17
.(4)求
| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 1 |
| 3×5 |
| 1 |
| 4×6 |
| 1 |
| n×(n+2) |
| 3n2+9n+4 |
| 2n2+6n+4 |
| 3n2+9n+4 |
| 2n2+6n+4 |
分析:根据所给的等式可得
=
-
,据此可求出(1)、(2)的值;
(3)依据
=
×(
-
)先展开,再合并,可化简3式,求出的结果等于
,进而可求n;
(4)依据
=
×(
-
)先展开4式,再加减,最后通分相加即可.
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
(3)依据
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
| 17 |
| 35 |
(4)依据
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
解答:解:(1)原式=1-
+
-
+…+
-
=1-
=
;
(2)原式=1-
+
-
+…+
-
=1-
=
;
(3)原式=
×(1-
+
-
+…+
-
)
=
×(1-
)
=
,
根据题意可得:
=
,
解得n=17;
(4)原式=
×(1-
+
-
+…+
-
)
=
×[(1+
+
+…+
)-(
+
+
…+
+
+
)]
=
×(1+
-
-
)
=
×[
-
]
=
-
=
.
故答案为:
;
;17;
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 6 |
=1-
| 1 |
| 6 |
=
| 5 |
| 6 |
(2)原式=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
=
| n |
| n+1 |
(3)原式=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
=
| n |
| 2n+1 |
根据题意可得:
| n |
| 2n+1 |
| 17 |
| 35 |
解得n=17;
(4)原式=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| (n+1)(n+2) |
=
| 3 |
| 4 |
| 1 |
| 2(n+1)(n+2) |
=
| 3n2+9n+4 |
| 2n2+6n+4 |
故答案为:
| 5 |
| 6 |
| n |
| n+1 |
| 3n2+9n+4 |
| 2n2+6n+4 |
点评:此题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分子分母出现多项式,应先将多项式分解因式再约分.同时注意最后结果应为最简分式.其中找出规律
=
-
是解本题的关键.
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
练习册系列答案
相关题目
观察图形,解答问题:![]()
(1)按下表已填写的形式填写表中的空格:
| | 图① | 图② | 图③ |
| 三个角上三个数的积 | 1×(-1)×2=-2 | (-3)×(-4)×(-5)=-60 | |
| 三个角上三个数的和 | 1+(-1)+2=2 | (-3)+(-4)+(-5)=-12 | |
| 积与和的商 | -2÷2=-1, | | |
观察图形,解答问题:
![]()
(1)按下表已填写的形式填写表中的空格:
|
|
图① |
图② |
图③ |
|
三个角上三个数的积 |
1×(-1)×2=-2 |
(-3)×(-4)×(-5)=-60 |
|
|
三个角上三个数的和 |
1+(-1)+2=2 |
(-3)+(-4)+(-5)=-12 |
|
|
积与和的商 |
-2÷2=-1, |
|
|
请用你发现的规律求出图④中的数y和图⑤中的数x.
观察图形,解答问题:
![]()
(1)按下表已填写的形式填写表中的空格:
|
|
图① |
图② |
图③ |
|
三个角上三个数的积 |
1×(﹣1)×2=﹣2 |
(﹣3)×(﹣4)×(﹣5)=﹣60 |
|
|
三个角上三个数的和 |
1+(﹣1)+2=2 |
(﹣3)+(﹣4)+(﹣5)=﹣12 |
|
|
积与和的商 |
﹣2÷2=﹣1, |
|
|
(2)请用你发现的规律求出图④中的数y和图⑤中的数x.