题目内容

用你发现的规律解答下列问题.
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4

┅┅
(1)计算
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=
5
6
5
6

(2)探究
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
n
n+1
n
n+1
.(用含有n的式子表示)
(3)
1
1×3
+
1
3×5
+
1
5×7
+…+
1
(2n-1)(2n+1)
的值为
17
35
,n=
17
17

(4)求
1
1×3
+
1
2×4
+
1
3×5
+
1
4×6
+…+
1
n×(n+2)
=
3n2+9n+4
2n2+6n+4
3n2+9n+4
2n2+6n+4
.(用含有n的式子表示)
分析:根据所给的等式可得
1
n(n+1)
=
1
n
-
1
n+1
,据此可求出(1)、(2)的值;
(3)依据
1
n(n+2)
=
1
2
×(
1
n
-
1
n+2
)先展开,再合并,可化简3式,求出的结果等于
17
35
,进而可求n;
(4)依据
1
n(n+2)
=
1
2
×(
1
n
-
1
n+2
)先展开4式,再加减,最后通分相加即可.
解答:解:(1)原式=1-
1
2
+
1
2
-
1
3
+…+
1
5
-
1
6

=1-
1
6

=
5
6


(2)原式=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1

=1-
1
n+1

=
n
n+1


(3)原式=
1
2
×(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1

=
1
2
×(1-
1
2n+1

=
n
2n+1

根据题意可得:
n
2n+1
=
17
35

解得n=17;

(4)原式=
1
2
×(1-
1
3
+
1
2
-
1
4
+…+
1
n
-
1
n+2

=
1
2
×[(1+
1
2
+
1
3
+…+
1
n
)-(
1
3
+
1
4
+
1
5
…+
1
n
+
1
n+1
+
1
n+2
)]
=
1
2
×(1+
1
2
-
1
n+1
-
1
n+2

=
1
2
×[
3
2
-
1
(n+1)(n+2)
]
=
3
4
-
1
2(n+1)(n+2)

=
3n2+9n+4
2n2+6n+4

故答案为:
5
6
n
n+1
;17;
3n2+9n+4
2n2+6n+4
点评:此题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分子分母出现多项式,应先将多项式分解因式再约分.同时注意最后结果应为最简分式.其中找出规律
1
n(n+1)
=
1
n
-
1
n+1
是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网