题目内容
图中各硬纸片,不可以沿虚线折叠成长方体纸盒的是( ).
(A)①② (B)②③ (C)③④ (D)①④
如图,抛物线y=-x2-x+6与x轴交于A、B两点,与y轴交于点C.
(1)求点A、B的坐标;
(2)设点P是线段AC上一点,且S△ABP:S△BCP=1:3,求点P的坐标;
(3)若直线y=x+a与抛物线交于M、N两点,当∠MON为锐角时,求a的取值范围.
如图,PA、PB是⊙O的切线,切点是A、B,已知∠P=60°,0A=3,那么∠AOB所对弧的长度为( )
A.6π B.5π C.3π D.2π
反比例函数与一次函数的图象交于A(-2,-1)和B两点,点B的纵坐标为-3,若,则x的取值范围是 .
如果点E,F,G,H分别是菱形ABCD四边AB,BC,CD,DA上的中点,那么四边形EFGH是( ).
(A)菱形 (B)矩形 (C)正方形 (D)以上都不是
(1)猜想与证明:
如图(1),摆放着两个矩形纸片ABCD和矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的数量关系,并证明你的结论.
(2)拓展与延伸:
如图(2),若将”猜想与证明“中的矩形纸片换成正方形纸片ABCD和正方形纸片ECGF,并使点F在边CD上,点M仍为AF的中点,试猜想DM与ME的数量关系,并证明你的结论.
解方程组:.
如图,已知正方形ABCD中,边长为10厘米,点E在AB边上,BE=6厘米.
(1)如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPE与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动,求经过多长时间点P与点Q第一次在正方形ABCD边上的何处相遇?
在对某次实验数据整理过程中,某个事件出现的频率随实验次数变化析线图如图所示,则符合这一结果的实验最有可能的是( )
A.抛一个质地均匀的正六面体骰子,向上的面点数是4
B.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球
C.一副的普通扑克牌洗匀后,从中任取一张牌的花色是红桃
D.抛硬币实验中关注正面出现的概率