题目内容
正方形ABCD中,E,F分别是AB与BC边上的中点,连接AF,DE,BD,交于G,H(如图所示)。求AG:GH:HF的值。
![]()
如图,△ABC三个顶点坐标分别为A (1,2),B (3,1),C (2,3),以原点O为位似中心,将△ABC放大为原来的2倍得△A′B′C′.
![]()
(1)在图中第一象限内画出符合要求的△A′B′C′;(不要求写画法)
(2)△A′B′C′的面积是: .
查看答案如图所示,一条河两岸有一段是平行的,在河的一岸每隔5米有一棵树,在河的对岸每隔50米有一根电线杆,在这岸离开岸边25米看对岸,看到对岸相邻两根电线杆恰被这岸的两棵树遮住,并且这两棵树之间还有三棵树,求河宽。
![]()
若y与x3成反比例,且x=2时
。
(1)求y与x的函数表达式;
(2)求y=—16时x的值。
查看答案如图,点A在双曲线
上,点B在双曲线
上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为__________.
![]()
如图所示,冰冰在墙上挂了一面镜子AB,调整好标杆CD,正好通过标杆顶部在镜子上边缘A处看到旗杆的顶端E的影子,已知AB=2m,CD=1.5m,BD=2m,BF=20m,则旗杆EF的高度为__________m。
![]()
- 题型:解答题
- 难度:困难
已知:|a﹣1|+|b+2|=0,求2a+b的值.
0 【解析】试题分析:由绝对值的非负性可求得a,b的值,进而求出2a+b的值. 试题解析:由|a-1|≥0,|b+2|≥0,|a-1| +|b+2|="0" ,得到a-1=0,b+2=0,解得:a=1,b=-2,所以2a+b=2-2=0.故答案为0.如图,一个正五棱柱的底面边长为2cm,高为4cm。
![]()
(1)这个棱柱共有多少个面?计算它的侧面积;
(2)这个棱柱共有多少个顶点?有多少条棱?
(3)试用含有
的代数式表示
棱柱的顶点数、面数、与棱的条数。
在等式的括号内填上恰当的项,x2﹣y2+8y﹣4=x2﹣(___________).
查看答案如果关于x的多项式x2﹣kx+9是一个完全平方式,那么k=________.
查看答案若a的相反数是﹣3,b的绝对值是4,则a+b=________.
查看答案如果两个角互补,并且它们的差是30°,那么较大的角是________.
查看答案 试题属性- 题型:解答题
- 难度:中等
已知函数:①y=ax2;②y=3(x﹣1)2+2;③y=(x+3)2﹣2x2;④y=
+x.其中,二次函数的个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
B 【解析】试题解析:根据定义②y=3(x﹣1)2+2;③y=(x+3)2﹣2x2是二次函数 故选B.杭州市从
年
月
日开始实行阶梯电价制,居民上生活用电价格方案如下:(本题不考虑峰谷电)
档次 | 全年的用电量 | 电价(单位:元/度) |
第一档 |
|
|
第二档 |
|
|
第三档 |
|
|
(
)小王家
年全年的用电量是
度,请计算小王家这年的电费付了多少元?
(
)小李家
年
月份这个月的用电量是
度,小李算出它们家的电费是
元,而供电局却收了小李家的电费
元,你知道其中的奥秘吗?请你来解释下.
(
)小张家
年全年用电量为
度,请用含
的代数式表示小张家全年应交的总电费,并把结果化简.
化简与求值:
(
)已知当
时,代数式
值为
,求代数式
的值.
(
)已知
,代数式
的值.
(
)若多项式
是关于
,
的四次二项式,求代数式
的值.
如图1,这是由8个同样大小的立方体组成的魔方,体积为64.
(1)求出这个魔方的棱长.
(2)图中阴影部分是一个正方形
,求出阴影部分的面积及其边长.
(3)把正方形
放到数轴上,如图
,使得
与
重合,点
与
重合,点
与点
关于
点对称,那么
在数轴上表示的数为__________;点
在数轴上表示的数为__________.
![]()
![]()
把六张形状大小完全相同的小长方形卡片(其中较短的一边长为
厘米,如图
)不重叠地放在一个底面为长方形(长为
厘米,宽为
厘米)的盒子底部(如图
),盒子底面未被卡片覆盖的部分分别用
,
表示,请观察图形,回答问题:
(
)求矩形
的长和宽(用含
或
的代数式表示).
(
)当图中两块长方形阴影部分
,
的周长和(用含
或
的代数式表示).
![]()
![]()
已知
、
为常数,且三个单项式
,
,
相加得到的和仍然是单项式,那么
的值可能是多少?请你说明理由.
- 题型:单选题
- 难度:简单
如果
,
,那么
约等于( ).
A.
B.
C.
D. ![]()
下列各组中.是同类项的是( ).
①
与
;②
与
;③
与
;④
与
.
A. ①②③ B. ①③④ C. ②③④ D. ①②④
查看答案比较数
,
,
,
的共同点,它们都是( ).
A. 分数 B. 有理数 C. 无理数 D. 正数
查看答案数轴上表示
的点
的位置应在( ).
A.
与
之间 B.
与
之间 C.
与
之间 D.
与
之间
的平方根是 ( )
A. 4 B.
C.
D. ![]()
备受世界瞩目的世纪工程“港珠澳大桥”总造价约
亿人民币,用科学记数法表示( ).
A.
元 B.
元 C.
元 D.
元
- 题型:单选题
- 难度:中等
如图,已知∠MON=90º,A是∠MON内部的一点,过点A作AB⊥ON,垂点为点B,AB=3厘米,OB=4厘米,动点E、F同时从O点出发,点E以1.5厘米/秒的速度沿ON方向运动,点F以2厘米/秒的速度沿OM方向运动,EF与OA交于点C,连接AE,当点E到达点B时,点F随之停止运动。设运动时间为t秒(t>0)。
(1)当t=1秒时,ΔEOF与ΔABO是否相似?请说明理由。
(2)在运动过程中,不论t取何值时,总有EF⊥OA,为什么?
(3)连接AF,在运动过程中,是否存在某一时刻t,使得SΔAEF=
S四边形ABOF ?若存在,请求出此时t的值;若不存在,请说明理由。
![]()
如图,在△ABC中,D是BC边上的点(不与点B、C重合),连结AD.
问题引入:
(1)如图①,当点D是BC边上的中点时,S△ABD:S△ABC= ;当点D是BC边上任意一点时,S△ABD:S△ABC= (用图中已有线段表示).
探索研究:
(2)如图②,在△ABC中,O点是线段AD上一点(不与点A、D重合),连结BO、CO,试猜想S△BOC与S△ABC之比应该等于图中哪两条线段之比,并说明理由.
拓展应用:
(3)如图③,O是线段AD上一点(不与点A、D重合),连结BO并延长交AC于点F,连结CO并延长交AB于点E,试猜想
的值,并说明理由.
![]()
如图, 正比例函数
的图象与反比例函数
的图象交于A、B两点,过点A作AC垂直x轴于点C,连接BC,若ΔABC面积为 2.
(1)求k的值
(2)x轴上是否存在一点D,使ΔABD是以AB为斜边的直角三角形?若存在,求出点D的坐标,若不存在,说明理由。
![]()
如图是某一蓄水池每1h的排水量V(m3/h)与排完水池中的水所用时间t(h)之间的函数图象。
(1)请你根据图象提供的信息求出此蓄水池的蓄水量;
(2)写出函数的函数表达式;
(3)若要6h排完水池的水,那么每1h的排水量应该是多少?
![]()
如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90º,E为AB的中点,求证:
(1)AC2=AB·AD;
(2)CE∥AD。
![]()
正方形ABCD中,E,F分别是AB与BC边上的中点,连接AF,DE,BD,交于G,H(如图所示)。求AG:GH:HF的值。
![]()
- 题型:解答题
- 难度:困难
如图所示,冰冰在墙上挂了一面镜子AB,调整好标杆CD,正好通过标杆顶部在镜子上边缘A处看到旗杆的顶端E的影子,已知AB=2m,CD=1.5m,BD=2m,BF=20m,则旗杆EF的高度为__________m。
![]()
如图,在ΔABC中,∠ACB=90°,AC=7,BC=3,CM、CH 分别是中线和高,则SΔACM:SΔBCM = __________,SΔACH:SΔBCH = __________.
![]()
已知
,则抛物线
的顶点坐标为____________。
如图,反比例函数
(k<0)的图象经过点A(-1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到了点B’在此反比例函数的图象上,则t的值是( )
![]()
A.
B.
C.
D. ![]()
如图,E(-4,2),F(-1,-1),以O为位似中心,按比例尺1:2,把△EOF缩小,则点E的对应点E′的坐标为( ).
![]()
A. (2,-1)或(-2,1) B. (8,-4)或(-8,4) C. (2,-1) D. (8,-4)
查看答案如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
![]()
A. 2 B. 2.5或3.5 C. 3.5或4.5 D. 2或3.5或4.5
查看答案 试题属性- 题型:填空题
- 难度:中等
如图,下列各式能使ΔACB∽ΔDCA的是( )
![]()
A.
B.
C.
D. ![]()
在同一平面直角坐标系中,一次函数
)和二次函数
)的图象可能为( )
![]()
A. A B. B C. C D. D
查看答案抛物线
的图象开口最大的是( )
A.
B.
C.
D. 无法确定
对于函数
,下列说法错误的是( )
A. 它的图象在第一、三象限
B. 它的图象既是轴对称图形又是中心对称图形
C. 当
>0时,
的值随
的增大而增大
D. 当
<0时,
的值随
的增大而减小
二次函数
的图象一定过点( )
A. (0,0) B. (1,2) C. (—1,2) D. 以上都正确
查看答案下列四组线段中,不能组成比例线段的是( )
A. ![]()
B. ![]()
C. ![]()
D. ![]()
- 题型:单选题
- 难度:中等
阅读材料:若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b。运用此方法可进行有理数的大小比较,如比较5与3的大小。因为5-3=2>0,所以5>3,我们把这种比较大小的方法叫作“求差法”。
(1)请用“求差法”比较大小:
与
;
(2)请运用不同于(1)的方法比较
与
的大小.
先简化、后求值:
,其中x=-2,y=-1.
(1)用代数式表示:a的3倍与b的差的一半;
(2)结合实际,说出代数式2a+3b的意义.
查看答案解方程: ![]()
计算: ![]()
有理数,a,b,c在数轴上的位置如图所示,则简化
-
的结果为__________.
![]()
- 题型:解答题
- 难度:中等