题目内容

如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E.

(1) 求证:AC平分∠DAB;

(2) 连接BE交AC于点F,若cos∠CAD=,求的值.

(1)证明见解析;(2). 【解析】试题分析:(1)连接OC,根据切线的性质和已知求出OC∥AD,求出∠OCA=∠CAO=∠DAC,即可得出答案; (2)连接BE、BC、OC,BE交AC于F交OC于H,根据cos∠CAD==,设AD=4a,AC=5a,则DC=EH=HB=3a,根据cos∠CAB==,求出AB、BC,再根据勾股定理求出CH,由此即可解决问题; 试题解析:【解析】 ...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网