题目内容
如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(1)求证:DE为⊙O的切线;
(2)若⊙O的半径为5,∠BAC=60°,求DE的长.
【答案】分析:(1)连接OD,根据OA=OB,CD=BD,得出OD∥AC,∠0DE=∠CED,再根据DE⊥AC,即可证出OD⊥DE,从而得出答案;
(2)结合(1)中的结论,可以证明△BOD是等边三角形,即可求得CD和BD的长,再根据锐角三角函数即可计算DE的长.
解答:
(1)证明:如图,连接OD.
∵OA=OB,CD=BD,
∴OD∥AC.
∴∠0DE=∠CED.
又∵DE⊥AC,
∴∠CED=90°.
∴∠ODE=90°,即OD⊥DE.
∴DE是⊙O的切线.
(2)解:∵OD∥AC,∠BAC=60°,
∴∠BOD=∠BAC=60°,
∠C=∠0DB.
又∵OB=OD,
∴△BOD是等边三角形.
∴∠C=∠ODB=60°,
CD=BD=5.
∵DE⊥AC,
∴DE=CD•sin∠C=5×sin60°=
.
点评:本题考查了切线的判定与性质,用到的知识点是圆周角定理的推论、线段垂直平分线的性质以及等边三角形的判定,是一道常考题型.
(2)结合(1)中的结论,可以证明△BOD是等边三角形,即可求得CD和BD的长,再根据锐角三角函数即可计算DE的长.
解答:
∵OA=OB,CD=BD,
∴OD∥AC.
∴∠0DE=∠CED.
又∵DE⊥AC,
∴∠CED=90°.
∴∠ODE=90°,即OD⊥DE.
∴DE是⊙O的切线.
(2)解:∵OD∥AC,∠BAC=60°,
∴∠BOD=∠BAC=60°,
∠C=∠0DB.
又∵OB=OD,
∴△BOD是等边三角形.
∴∠C=∠ODB=60°,
CD=BD=5.
∵DE⊥AC,
∴DE=CD•sin∠C=5×sin60°=
点评:本题考查了切线的判定与性质,用到的知识点是圆周角定理的推论、线段垂直平分线的性质以及等边三角形的判定,是一道常考题型.
练习册系列答案
相关题目