题目内容

 

1.请阅读材料并填空:

问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1.求∠BPC的度数和等边三角形ABC的边长.

李明同学的思路是:将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2).连结PP′.

根据李明同学的思路,进一步思考后可求得∠BPC=­____°,等边△ABC的边长为____.

2.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=,BP=,PC=1.求∠BPC的度数和正方形ABCD的边长.

 

 

1.150°,

2.如图,将△BPC绕点B逆时针旋转90°,得△BP′A,则△BPC≌△BP′A.  ……3分

∴AP′=PC=1,BP=BP′=.

连结PP′,在Rt△BP′P中,∵ BP=BP′=,∠PBP′=90°,

∴ PP′=2,∠BP′P=45°.  …………4分

在△AP′P中, AP′=PC=1,PP′=2,AP=,∵ 12+22=()2,即AP′2+PP′ 2=AP2

∴ △AP′P是直角三角形,即∠AP′P=90°.  …………5分

∴∠AP′B=∠AP′P+∠BP′P=135°.

∴ ∠BPC=∠AP′B=135°.  …………6分

过点B作BE⊥AP′交AP′的延长线于点E.

则∠EP′B=45°,∴ EP′=BE=BP′=1,∴AE=2.

∴在Rt△ABE中,由勾股定理,得AB=.  …………8分

∴∠BPC=135°,正方形边长为.

解析:略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网