题目内容
如图所示的几何体是由五个小正方形体组合而成的,它的主视图是( )
(本题12分)为了推进节能减排,发展低碳经济,温州市某公司以 25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工,已知生产这种产品的成本价为每件20元,经过市场调研发现,该产品的年销售量y(万件)与销售单价x(元)之间的函数关系式为y=25-0.5x,其中销售单价不低于25元且不高于45元.(第一年年获利=年销售收入-生产成本-投资成本,第二年年获利=年销售收入-生产成本)
(1)当销售单价定为28元时,该产品的年销售量为多少万件?
(2)求该公司第一年的年获利w(万元)与销售单价x(元)之间的函数关系式,由于投资金额较大,投资的第一年,该公司最小亏损是多少万元?并求此时的销售单价为多少元?
(3)填空:第二年,该公司决定给希望工程捐助款m万元,该项捐助款由两部分组成:一部分为10万元的固定捐款,另一部分则为每销售一件产品,就抽出一元钱作为捐款,若除去第一年的最小亏损金额以及第二年的捐助款后,到第二年年底,两年的总盈利等于67.5万元,请你确定第二年销售单价x的值为________.
在长方形ABCD中AB=16,如图所示裁出一扇形ABE,将扇形围成一个圆锥(AB和AE重合),则此圆锥的底面半径为( )
A.4 B.16 C. D.8
美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量是国画作品数量的2倍多7幅,则展出的油画作品有 幅.
小明家、公交车站、学校在一条笔直的公路旁(小明家到这条公路的距离忽略不计)。一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条路跑步赶到学校(上、下车时间忽略不计),小明与家的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示。已知小明从家出发7分钟时与家的距离为1200米,从上车到他到达学校共用10分钟。下列说法:
①小明从家出发5分钟时乘上公交车
②公交车的速度为400米/分钟
③小明下公交车后跑向学校的速度为100米/分钟
④小明上课没有有迟到。
其中正确的个数是( )
(A)1个 (B)2个 (C)3个 (D)4个
(11分)(2015•佛山)如图,在ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连接BE、BF,使它们分别与AO相交于点G、H.
(1)求EG:BG的值;
(2)求证:AG=OG;
(3)设AG=a,GH=b,HO=c,求a:b:c的值.
(6分)(2015•佛山)如图,△ABC是等腰三角形,AB=AC,请你用尺规作图将△ABC分成两个全等的三角形,并说明这两个三角形全等的理由.(保留作图痕迹,不写作法)
(3分)(2015•佛山)﹣3的倒数为( )
A. B. C.3 D.-3
已知反比例函数y=,则下列点中在这个反比例函数图象的上的是
A.(-2,1) B.(1,-2)
C.(-2,-2) D.(1,2)