题目内容
下列一元二次方程中,有两个不相等的实数根的方程是 ( )
A. B.
C. D.
如图,已知抛物线与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.
(1)求该抛物线的解析式;
(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△BCD的面积最大?若存在,求出D点坐标及△BCD面积的最大值;若不存在,请说明理由.
(3)在(1)中的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.
如图,一艘海轮位于灯塔P的北偏东方向55°,距离灯塔为2 海里的点A处.如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长是( )
(A)2 海里 (B)海里 (C)海里 (D)海里
在半径为1的⊙O中,120°的圆心角所对的弧长是 .
一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )
A.4 B.5 C.6 D.8
(本题满分8分)如图,二次函数的图象与x轴相交于A(-3,0)、B(1,0)两点,与y轴相交于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.
(1)D点坐标( , );
(2)求一次函数的表达式;
(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.
如图,在四边形ABCD中,AB∥CD,要使得四边形ABCD是平行四边形,应添加的条件是 (只填写一个条件,不使用图形以外的字母和线段)
探究:如图①,△ABC是等腰直角三角形,∠ACB=90°,AC=BC.点D在边AB上(D不与A,B重合),连结CD,过点C作CE⊥CD,且CE=CD,连结DE、AE.
求证:△BCD≌△ACE.
应用:如图②,在图①的基础上,点D在BA的延长线上,其他条件不变.若AD=AB,AB=4,求DE的长.
已知,如图,AB是⊙O的直径,点D,C在⊙O上,连结AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度数是 .